Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 3
Article Contents

XIONG Ying, WANG Yaping, HAN Zhangxiong, DONG Yani, JIANG Junping. Screening of Extractable Reagents for Heavy Metal Elements in the Detailed Survey of Soil Pollution in China[J]. Rock and Mineral Analysis, 2022, 41(3): 384-393. doi: 10.15898/j.cnki.11-2131/td.202004130045
Citation: XIONG Ying, WANG Yaping, HAN Zhangxiong, DONG Yani, JIANG Junping. Screening of Extractable Reagents for Heavy Metal Elements in the Detailed Survey of Soil Pollution in China[J]. Rock and Mineral Analysis, 2022, 41(3): 384-393. doi: 10.15898/j.cnki.11-2131/td.202004130045

Screening of Extractable Reagents for Heavy Metal Elements in the Detailed Survey of Soil Pollution in China

  • BACKGROUND

    The extractable state of soil heavy metal elements is an important index to measure their bioavailability, but its content changes with soil acid-base properties and other environmental conditions. When determining which method to use for the extractable state of soil heavy metal elements, there are more than 7 kinds of extraction reagents involved in relevant standard methods or technical specifications. These include hydrochloric acid of pH=5.8, 0.1mol/L hydrochloric acid, 0.43±0.02mol/L nitric acid, 0.11mol/L acetic acid, 1mol/L ammonium nitrate solution, 0.005mol/L DTPA leaching agent, 0.01mol/L calcium chloride solution. Different scholars have different research conclusions on different extractants. There is no systematic research report on extractants suitable for different soil types.

    OBJECTIVES

    To select and determine the general extractant suitable for the extractable state of heavy metal elements in soil with different acid-base properties.

    METHODS

    Using typical farming soil samples as the research objective, 7 kinds of extracting agent were used to extract 8 heavy metals (Cd, Ni, Cu, Zn, Cr, Pb, As and Hg). Inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine Cd, Cr, Cu, Pb, Zn, Ni, whereas atomic fluorescence spectrometry (AFS) was used to determine As and Hg. The extraction rates of 7 kinds of extractants were compared, and the effects of soil acid and alkali properties on the extraction rate of heavy metal elements were studied.

    RESULTS

    Dilute acid solution had a strong ability of leaching heavy metals from soil, and it was not related to the acidity and alkalinity of the soil. Although the extraction ability of 1mol/L ammonium nitrate solution for cadmium indicated that the activity of cadmium in acidic soil was much higher than that in alkaline soil, its extraction rate of lead in alkaline soil was higher than that of cadmium. The extraction rate of DTPA extractant for soil heavy metal elements was significantly higher than that of 0.01mol/L calcium chloride solution, especially for lead, copper and zinc. Moreover, the extraction rate of DTPA extractant for soil heavy metal elements did not change significantly with soil acid-base properties. 0.01mol/L calcium chloride solution had the highest extraction rate of cadmium in soil, which was closely related to the acid-base properties of soil.

    CONCLUSIONS

    0.01mol/L calcium chloride solution is an ideal general extractant for the extractable state of soil heavy metal elements.

  • 加载中
  • [1] 陈飞霞, 魏世强. 土壤中有效态重金属的化学试剂提取法研究进展[J]. 干旱环境监测, 2006, 20(3): 153-158. doi: 10.3969/j.issn.1007-1504.2006.03.008

    CrossRef Google Scholar

    Chen F X, Wei S Q. Study of chemical extraction of heavy metals in soil[J]. Arid Environmental Monitoring, 2006, 20(3): 153-158. doi: 10.3969/j.issn.1007-1504.2006.03.008

    CrossRef Google Scholar

    [2] 陈宗定, 许春雪, 刘贵磊, 等. 6种南方酸性土壤重金属元素氯化钙可提取态标准物质研制[J]. 冶金分析, 2021, 41(10): 12-22.

    Google Scholar

    Chen Z D, Xu C X, Liu G L, et al. Development of six extractable certified reference materials of calcium chloride for analysis of heavy metals in southern acid soil[J]. Metallurgical Analysis, 2021, 41(10): 12-22.

    Google Scholar

    [3] 高琳琳, 鮑广灵, 张宁, 等. 土壤重金属有效态纳入农田环境质量标准探讨[J]. 安徽农学通报, 2021, 27(10): 105-109, 114. doi: 10.3969/j.issn.1007-7731.2021.10.041

    CrossRef Google Scholar

    Gao L L, Bao G L, Zhang N, et al. Study on the availability of heavy metals in soil as a risk assessment index for heavy metal pollution of soil and agricultural products[J]. Anhui Agriculture Science Bulletin, 2021, 27(10): 105-109, 114. doi: 10.3969/j.issn.1007-7731.2021.10.041

    CrossRef Google Scholar

    [4] 许建华编译. 日本《土壤污染对策》与土壤环境检测[J]. 环境检测管理与技术, 2006, 18(4): 49-51.

    Google Scholar

    Xu J H (Translator). Japan "soil pollution counter-measures" and soil environmental testing[J]. Management and Technology of Environmental Testing, 2006, 18(4): 49-51.

    Google Scholar

    [5] 刘玉荣, 党志, 尚爱安, 等. 几种萃取剂对土壤中重金属生物有效部分的萃取效果[J]. 土壤与环境, 2002, 11(3): 245-247. doi: 10.3969/j.issn.1674-5906.2002.03.006

    CrossRef Google Scholar

    Liu Y R, Dang Z, Shang A A, et al. Comparing several extractants for extracting bioavailable part of heavy metals in soils[J]. Soil and Environmment, 2002, 11(3): 245-247. doi: 10.3969/j.issn.1674-5906.2002.03.006

    CrossRef Google Scholar

    [6] 贺静, 林玉锁, 刘鹏, 等. 不同提取剂提取酸性土壤有效态Cu和Cd的方法研究[J]. 环境监测管理技术, 2009, 21(5): 25-29.

    Google Scholar

    He J, Lin Y S, Liu P, et al. The study of extraction method for available copper and cadmium in acidity soil with different extractants[J]. China Academic Journal Electronic Publishing House, 2009, 21(5): 25-29.

    Google Scholar

    [7] 尹君, 刘文菊, 谢建治, 等. 土壤中有效态镉、汞浸提剂和浸提条件研究[J]. 河北农业大学学报, 2000, 23(2): 25-28. doi: 10.3969/j.issn.1000-1573.2000.02.007

    CrossRef Google Scholar

    Yin J, Liu W J, Xie J Z, et al. The study on extraction conditions and extractants of soil available Cd, Hg[J]. Journal of Hebei Agricultural Universtiy, 2000, 23(2): 25-28. doi: 10.3969/j.issn.1000-1573.2000.02.007

    CrossRef Google Scholar

    [8] 李亮亮, 张大庚, 李天来, 等. 土壤有效态重金属提取剂选择的研究[J]. 土壤, 2008, 40(5): 819-823. doi: 10.3321/j.issn:0253-9829.2008.05.024

    CrossRef Google Scholar

    Li L L, Zhang D G, Li T L, et al. On relation between heavy metal available contents of soil determined by different extractants and of maize organs[J]. Soils, 2008, 40(5): 819-823. doi: 10.3321/j.issn:0253-9829.2008.05.024

    CrossRef Google Scholar

    [9] 尚爱安, 党志, 梁重山. 土壤/沉积物中微量重金属的化学萃取方法研究进展[J]. 农业环境保护, 2001, 20(4): 266-269.

    Google Scholar

    Shang A A, Dang Z, Liang C S, et al. Procedings of chemical extraction of heavy metals in soils and sediments[J]. Agro-Environmental Protection, 2001, 20(4): 266-269.

    Google Scholar

    [10] 周启星, 滕涌, 展思辉, 等. 土壤环境基准/标准研究需要解决的基础性问题[J]. 农业环境科学学报2014, 33(1): 1-14.

    Google Scholar

    Zhou Q X, Teng Y, Zhan S H. Fundamental problems to be solved in research on soil-environmental criteria/standards[J]. Journal of Agro-Environment Science, 2014, 33(1): 1-14.

    Google Scholar

    [11] Wang W S, Shan X Q, Wen B, et al. Relationship betw-een the extractable metals from soils and metals taken up by maize roots and shoots[J]. Chemosphere, 2003, 53(5): 523-530. doi: 10.1016/S0045-6535(03)00518-6

    CrossRef Google Scholar

    [12] 李利梅, 成永霞, 袁远, 等. 土壤重金属有效态单级提取方法研究[J]. 安徽农业科学, 2020, 48(12): 13-15, 19. doi: 10.3969/j.issn.0517-6611.2020.12.004

    CrossRef Google Scholar

    Li L M, Cheng Y X, Yuan Y, et al. Study on single-stage extraction method to heavy metals effective state in soil[J]. Anhui Agricultural Sciences, 2020, 48(12): 13-15, 19. doi: 10.3969/j.issn.0517-6611.2020.12.004

    CrossRef Google Scholar

    [13] 郝汉舟, 靳孟贵, 李瑞敏, 等. 耕地土壤铜、镉、锌形态及生物有效性研究[J]. 生态环境学报, 2010, 19(1): 92-96. doi: 10.3969/j.issn.1674-5906.2010.01.018

    CrossRef Google Scholar

    Hao H Z, Jin M G, Li R M, et al. Fractionations and bioavailability of Cu, Cd and Zn in cultivated[J]. Ecology and Environmental Sciences, 2010, 19(1): 92-96. doi: 10.3969/j.issn.1674-5906.2010.01.018

    CrossRef Google Scholar

    [14] 郑绍建, 胡霭堂, 蒋廷惠, 等. 污染土壤中镉活性提取剂的选择[J]. 农业环境保护, 1995, 14(2): 49-53.

    Google Scholar

    Zheng S J, Hu A T, Jiang Y H, et al. The selection of available cadmium extractants in contaminated soils[J]. Agro-Environmental Protection, 1995, 14(2): 49-53.

    Google Scholar

    [15] 袁波, 傅瓦利, 蓝家程, 等. 菜地土壤铅、镉有效态与生物有效性研究[J]. 水土保持学报, 2011, 25(5): 130-134.

    Google Scholar

    Yuan B, Fu W L, Lan J C, et al. Study on the available and bioavailability of lead and cadmium in soil of vegetable plantation[J]. Journal of Soil and Water Conservation, 2011, 25(5): 130-134.

    Google Scholar

    [16] 利锋, 张学先, 戴睿志. 重金属有效态与土壤环境质量标准制订[J]. 广东微量元素科学2008, 15(1): 7-10. doi: 10.3969/j.issn.1006-446X.2008.01.002

    CrossRef Google Scholar

    Li F, Zhang X X, Dai R Z. The bioavailability of heavy metal and environmental quality standard for soil[J]. Guangdong Trace Elements Science, 2008, 15(1): 7-10. doi: 10.3969/j.issn.1006-446X.2008.01.002

    CrossRef Google Scholar

    [17] 冯精兰, 胡鹏抟, 刘群, 等. 黄河中下游干流沉积物中重金属的赋存形态及其生态风险[J]. 环境化学, 2015, 34(1): 178-185.

    Google Scholar

    Feng J L, Hu P T, Liu Q, et al. Chemical speciation and risk assessment of heavy metals in the sediments from the mainstream of middle and lower reaches of yellow river[J]. Environmental Chemistry, 2015, 34(1): 178-185.

    Google Scholar

    [18] 张大元, 熊强. 土壤-植物系统中汞的生物有效性及其调控[J]. 安徽农业科学, 2009, 37(31): 15593-15594, 15604. doi: 10.3969/j.issn.0517-6611.2009.31.129

    CrossRef Google Scholar

    Zhang D Y, Xiong Q. Control and bioavailability of mercury in soil plant system[J]. Anhui Agricultural Sciences, 2009, 37(31): 15593-15594, 15604. doi: 10.3969/j.issn.0517-6611.2009.31.129

    CrossRef Google Scholar

    [19] 杨少斌, 孙向阳, 张骏达, 等. 北京市五环内绿地土壤4种重金属的形态特征及其生物有效性[J]. 水土保持通报, 2018, 38(3): 79-85.

    Google Scholar

    Yang S B, Sun X Y, Zhang J D, et al. Speciation and bioavailability of four heavy metals in greenbelt soil within 5th ring road of Beijing City[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 79-85.

    Google Scholar

    [20] 王建乐, 谢仕斌, 王冠, 等. 不同提取剂提取土壤中重金属能力的对比研究[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 55-62.

    Google Scholar

    Wang J L, Xie S B, Wang G, et al. A comparative study of the capacity of different extractants to extract heavy metals in soil[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 55-62.

    Google Scholar

    [21] 李永涛, 刘科学, 张池, 等. 广东大宝山地区重金属污染水田土壤的Cu、Pb、Zn、Cd全量与DTPA浸提态含量的相互关系研究[J]. 农业环境科学学报, 2004, 23(6): 1110-1114. doi: 10.3321/j.issn:1672-2043.2004.06.018

    CrossRef Google Scholar

    Li Y T, Liu K X, Zhang C, et al. Relationships between total and DTPA extractable contents of Cu, Pb, Zn, Cd in trace metal-contaminated paddy soils of Dabaoshan, Guangdong[J]. Journal of Agro-Environment Science, 2004, 23(6): 1110-1114. doi: 10.3321/j.issn:1672-2043.2004.06.018

    CrossRef Google Scholar

    [22] 熊礼明, 鲁如坤. 土壤有效Cd浸提剂对Cd的浸提机制[J]. 环境化学, 1992, 11(3): 41-47.

    Google Scholar

    Xiong L M, Lu R K. Extracting mechanism of chemical extractants for available cadmium in soils[J]. Environmental Chemistry, 1992, 11(3): 41-47.

    Google Scholar

    [23] 颜世红, 吴春发, 胡友彪, 等. 典型土壤中有效态镉CaCl2提取条件优化研究[J]. 中国农学通报, 2013, 29(9): 99-104.

    Google Scholar

    Yan S H, Wu C F, Hu Y B, et al. Optization of CaCl2 extraction of available cadmium in typical soils[J]. Chinese Agricultural Science Bulletin, 2013, 29(9): 99-104.

    Google Scholar

    [24] 张海强, 赵钟兴, 王晓飞, 等. 不同提取剂对蔗田土壤中重金属有效态提取效率的研究[J]. 江西农业学报, 2015, 27(8): 96-98.

    Google Scholar

    Zhang H Q, Zhao Z X, Wang X F, et al. Study on efficiency of different extractants in extraction of available heavy metals from soil of sugarcane field[J]. Acta Agriculturae Jiangxi, 2015, 27(8): 96-98.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(2360) PDF downloads(130) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint