Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 1
Article Contents

WU Hao, ZHU Hong-xia, YUAN Mao, XU Ren-ji, XUE Li-dong. Determination of Ammonium Nitrogen and Nitrate Nitrogen in Soil by Gas Phase Molecular Absorption Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 165-171. doi: 10.15898/j.cnki.11-2131/td.202003100029
Citation: WU Hao, ZHU Hong-xia, YUAN Mao, XU Ren-ji, XUE Li-dong. Determination of Ammonium Nitrogen and Nitrate Nitrogen in Soil by Gas Phase Molecular Absorption Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 165-171. doi: 10.15898/j.cnki.11-2131/td.202003100029

Determination of Ammonium Nitrogen and Nitrate Nitrogen in Soil by Gas Phase Molecular Absorption Spectrometry

More Information
  • BACKGROUND

    Determination of ammonium nitrogen and nitrate nitrogen in soil makes great sense for indication of the nutrient status and environment evaluation of soil. The standard methods based on spectrophotometry are susceptible to interference from the color of the extraction test solution, turbidity, and other coexisting ions. Moreover, those methods are time-consuming due to the demand of decoloration.

    OBJECTIVES

    To establish a convenient and high sensitivity method for the determination of ammonium nitrogen and nitrate nitrogen in soil, based on simultaneous extraction.

    METHODS

    Ammonium nitrogen and nitrate nitrogen in soil were simultaneously extracted with KCl solution without decoloration, and determined by gas phase molecular absorption spectrometry.

    RESULTS

    50 samples were determined within 5h due to the avoidance of the color reaction process. The dynamic linear ranges of ammonium nitrogen and nitrate nitrogen were 0.10-2.00mg/L and 0.20-4.00mg/L, respectively. The detection limits were 0.013mg/kg and 0.002mg/kg, respectively. The recoveries ranged from 96.3% to 100.7%, and the relative standard deviation was below 1%.

    CONCLUSIONS

    Compared with the national standard method based on traditional spectrophotometry, this method has significantly improved the detection limit, precision and recovery. The method can be widely used in the field of detection of ammonium nitrogen and nitrate nitrogen in farmland soil.

  • 加载中
  • [1] 鲁珊, 毛彩云, 肖荷霞, 等. 土壤中氮检测技术研究进展[J]. 安徽农业科学, 2014(18): 5789, 5815.

    Google Scholar

    Lu S, Mao C Y, Xiao H X, et al. Research advance in the determination of nitrogen in soil[J]. Journal of Anhui Agricultural Sciences, 2014, 42(18): 5789, 5815.

    Google Scholar

    [2] 谢雨呈. 典型肥料生产场地氨氮污染特征及风险控制目标确定[D]. 长沙: 湖南师范大学, 2019.

    Google Scholar

    Xie Y C.Characteristics of ammonia-nitrogen pollution and determination of risk control targets in an abandoned fertilizer production site[D]. Changsha: Hunan Normal University, 2019.

    Google Scholar

    [3] 金容, 李兰, 郭萍, 等. 控释氮肥比例对土壤氮含量和玉米氮素吸收利用的影响[J]. 水土保持学报, 2018, 32(6): 214-221.

    Google Scholar

    Jin R, Li L, Guo P, et al. Effects of the mixed ratios of controlled-release nitrogen fertilizer on soil nitrogen content and its uptake and utilization of maize[J]. Journal of Soil and Water Conservation, 2018, 32(6): 214-221.

    Google Scholar

    [4] 陈宏, 刘翔, 卢欣, 等. 某化工污染场地土壤与地下水污染特征分析[J]. 油气田环境保护, 2017, 27(1): 21-24, 60-61.

    Google Scholar

    Chen H, Lu X, Lu X, et al. Analysis of pollution characteristics of the soil and groundwater at a typical chemical pollution site[J]. Environmental Protection of Oil & Gas Fields, 2017, 27(1): 21-24, 60-61.

    Google Scholar

    [5] Huang J, Duan Y H, Xu M G, et al. Nitrogen mobility, ammonia volatilization, and estimated leaching loss from long-term manure incorporation in red soil[J]. Journal of Integrative Agriculture, 2017, 16(9): 2082-2092. doi: 10.1016/S2095-3119(16)61498-3

    CrossRef Google Scholar

    [6] 涂成, 黄威, 陈安磊, 等. 测定土壤硝态氮的紫外分光光度法和镉柱还原法比较[J]. 土壤, 2016, 48(1): 147-151.

    Google Scholar

    Tu C, Huang W, Chen A L, et al. Comparison between ultraviolet spectrophotometry and cadmium reduction method in determination of soil nitrate-N[J]. Soils, 2016, 48(1): 147-151.

    Google Scholar

    [7] 苗杰, 李斐, 张加康, 等. 紫外分光光度法测定土壤硝态氮校正因数的优化[J]. 华北农学报, 2019, 34(增刊1): 204-212.

    Google Scholar

    Miao J, Li F, Zhang J K, et al. Optimization of correction factor of soil nitrate nitrogen by ultraviolet spectro-photometry[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(Supplement 1): 204-212.

    Google Scholar

    [8] 宋歌, 孙波, 教剑英. 测定土壤硝态氮的紫外分光光度法与其他方法的比较[J]. 土壤学报, 2007, 44(2): 288-293.

    Google Scholar

    Song G, Sun B, Jiao J Y. Comparison between ultraviolet spectrophotometry and other methods in determination of soil nitrate-N[J]. Acta Pedologica Sinica, 2007, 44(2): 288-293.

    Google Scholar

    [9] 陕红, 张庆忠, 张晓娟, 等. 保存、分析方法等因素对土壤中硝态氮测定的影响[J]. 分析测试学报, 2013, 32(12): 1466-1471.

    Google Scholar

    Shan H, Zhang Q Z, Zhang X J, et al. Effects of preservation, analysis method on determination of nitrate in soils[J]. Journal of Instrumental Analysis, 2013, 32(12): 1466-1471.

    Google Scholar

    [10] 弓晓峰, 张静, 张振辉, 等. 纳氏试剂比色法测定土壤铵态氮的研究[J]. 环境科学与技术, 2006, 29(1): 46-45.

    Google Scholar

    Gong X F, Zhang J, Zhang Z H, et al. Measurement of NH3-N in soil with Nessler's reagent colorimetry[J]. Environmental Science & Technology, 2006, 29(1): 46-45.

    Google Scholar

    [11] 张英利, 许安民, 尚浩博, 等. 氯化钾中杂质铵含量及对土壤铵态氮测定的影响[J]. 土壤通报, 2010, 41(5): 1134-1137.

    Google Scholar

    Zhang Y L, Xu A M, Shang H B, et al. Ammonium contents in potassium chloride impurities and its impact on soil NH4+-N determination[J]. Chinese Journal of Soil Science, 2010, 41(5): 1134-1137.

    Google Scholar

    [12] 黄玉芳, 叶优良, 杨素勤. 双波长分光光度法测定土壤硝态氮的可行性研究[J]. 中国农学通报, 2009, 25(2): 43-45.

    Google Scholar

    Huang Y F, Ye Y L, Yang S Q. Feasibility of NO3--N determination by dual wavelength spectrophotometric method[J]. Chinese Agricultural Science Bulletin, 2009, 25(2): 43-45.

    Google Scholar

    [13] 杨靖民, 张忠庆, 于晓斌, 等. 连续流动注射-紫外分光光度法快速测定土壤硝酸盐含量[J]. 吉林农业大学学报, 2013, 35(5): 573-576, 582.

    Google Scholar

    Yang J M, Zhang Z Q, Yu X B, et al. Rapid determination of soil nitrate content with continuous flow injection-ultraviolet spectrophotometry[J]. Journal of Jilin Agricultural University, 2013, 35(5): 573-576, 582.

    Google Scholar

    [14] 朱靖蓉, 马磊, 康露, 等. 降低样品采集制备过程中土壤硝态氮和铵态氮测定误差的方法[J]. 新疆农业科学, 2020, 57(3): 553-561.

    Google Scholar

    Zhu J R, Ma L, Kang L, et al. Review on the method for reducing measurement error of soil nitrate nitrogen and ammonium nitrogen during sample collection and preparation[J]. Xinjiang Agricultural Sciences, 2020, 57(3): 553-561.

    Google Scholar

    [15] 张丽楠, 张淼, 任海燕, 等. Superfloc127用于电极法测定土壤硝态氮含量的可行性分析[J]. 农业工程学报, 2015, 31(1): 196-204.

    Google Scholar

    Zhang L N, Zhang M, Ren H Y, et al. Feasibility of rapid detection of soil nitrate-nitrogen content using Superfloc127 in ion-selective electrode[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1): 196-204.

    Google Scholar

    [16] 杜尚丰, 曹淑姝, 潘奇, 等. 电极法测定土壤硝态氮精度的提高方法[J]. 农业机械学报, 2016, 47(1): 118-125.

    Google Scholar

    Du S F, Cao S S, Pan Q, et al. Improvement of detection accuracy of soil nitrate-nitrogen based on ion selective electrode[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(1): 118-125.

    Google Scholar

    [17] 孔盼, 张淼, 任海燕, 等. 土壤硝态氮电极法测定的快速前处理工艺研究[J]. 农业机械学报, 2015, 46(增刊1): 102-107.

    Google Scholar

    Kong P, Zhang M, Ren H Y, et al. Rapid pretreatment method for soil nitrate nitrogen detection based on ion selective electrode[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(Supplement 1): 102-107.

    Google Scholar

    [18] 李福君. 气相分子吸收光谱法应用于废水中的氨氮测定[J]. 当代化工研究, 2018(12): 111-112.

    Google Scholar

    Li F J. Determination of ammonia nitrogen in wastewater by gas-phase molecular absorption spectrometry[J]. Modern Chemical Research, 2018(12): 111-112.

    Google Scholar

    [19] 李长宏, 孙婧妍. 气相分子光谱法测定水中硝酸盐氮的研究[J]. 地下水, 2018, 40(4): 107-108.

    Google Scholar

    Li C H, Sun J Y. Determination of nitrate nitrogen in water by gas phase molecular spectroscopy[J]. Underground Water, 2018, 40(4): 107-108.

    Google Scholar

    [20] 朱晓丹, 王炜, 廖爱仙, 等. 气相分子吸收光谱法测定地表水中氨氮的研究[J]. 环境与发展, 2018, 30(6): 232-233.

    Google Scholar

    Zhu X D, Wang W, Liao A X, et al. Determination of ammonia nitrogen in surface water by using gas-phase molecular absorption spectrometry[J]. Environment and Development, 2018, 30(6): 232-233.

    Google Scholar

    [21] 陈海莹, 欧嘉辉, 陈飒, 等. 气相分子吸收光谱法测定污水中硫化物的方法应用[J]. 广东化工, 2018, 45(8): 230-231.

    Google Scholar

    Chen H Y, Ou J H, Chen S, et al. Determination of sulfide in waste water by gas phase molecular absorption spectrometry[J]. Guangdong Chemical Industry, 2018, 45(8): 230-231.

    Google Scholar

    [22] 齐文启, 臧平安, 郝俊, 等. 气相分子吸收光谱仪光源优化方案探讨[J]. 现代科学仪器, 2016(6): 53-55.

    Google Scholar

    Qi W Q, Zang P A, Hao J, et al. Discussion of optimal light-source scheme of GPMAS[J]. Modern Scientific Instrument, 2016(6): 53-55.

    Google Scholar

    [23] 代阿芳, 黄依凡, 范慧, 等. 气相分子吸收光谱法测定地下水中亚硝酸盐氮、氨氮、硝酸盐氮[J]. 化学分析计量, 2020, 29(1): 75-78.

    Google Scholar

    Dai A F, Huang Y F, Fan H, et al. Determination of NO2-, NH4+, NO3--N in groundwater samples by gas-phase molecular absorption spectroscopy[J]. Chemical Analysis and Meterage, 2020, 29(1): 75-78.

    Google Scholar

    [24] 常淼, 张建中, 张嘉骅, 等. 气相分子吸收光谱法测定水中氨氮和亚硝酸盐氮[J]. 干旱环境监测, 2019, 33(3): 102-106.

    Google Scholar

    Chang M, Zhang J Z, Zhang J Y, et al. Determination of ammonia and nitrite in water by gas phase molecular absorption spectrometry[J]. Arid Environmental Monitoring, 2019, 33(3): 102-106.

    Google Scholar

    [25] 吕保玉, 潘艳, 蓝月存, 等. 氯化钾提取-气相分子吸收光谱法测定土壤中的氨氮[J]. 化学工程师, 2019, 33(9): 28-30.

    Google Scholar

    Lv B Y, Pan Y, Lan Y C, et al. Determination of ammonia-nitrogen in soil by using potassium chloride extraction and gas-phase molecular absorption spectrometry[J]. Chemical Engineer, 2019, 33(9): 28-30.

    Google Scholar

    [26] 暴玮, 黄增, 吕保玉, 等. 气相分子吸收光谱法和分光光度法测定土壤中氨氮的比较[J]. 分析试验室, 2019, 38(12): 1436-1439.

    Google Scholar

    Bao W, Huang Z, Lü B Y, et al. Comparison of gas-phase molecular absorption spectrometry and spectro-photometry for determination of ammonia nitrogen in soil[J]. Chinese Journal of Analysis Laboratory, 2019, 38(12): 1436-1439.

    Google Scholar

    [27] 田衎, 杨珺, 孙自杰, 等. 矿区污染场地土壤重金属元素分析标准样品的研制[J]. 岩矿测试, 2017, 36(1): 82-88.

    Google Scholar

    Tian K, Yang J, Sun Z J, et al. Preparation of soil certified reference materials for heavy metals in contaminated sites[J]. Rock and Mineral Analysis, 2017, 36(1): 82-88.

    Google Scholar

    [28] Pan L B, Wang Y, Ma J, et al. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities[J]. Environmental Science and Pollution Research International, 2018, 25(2): 1055-1069. doi: 10.1007/s11356-017-0513-1

    CrossRef Google Scholar

    [29] 刘盼西, 刘丰奎, 刘聪. 气相分子吸收光谱法测定味精中硫化物含量[J]. 分析科学学报, 2020, 36(2): 313-316.

    Google Scholar

    Liu P X, Liu F K, Liu C. Determination of sulfide in monosodium glutamate by gas-phase molecular absorption spectroscopy[J]. Journal of Analytical Science, 2020, 36(2): 313-316.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(4180) PDF downloads(336) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint