Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 2
Article Contents

XUE Jia. Determination of Valences of As, Cr, Sb and Se in Soil Using HPLC-HG-AFS[J]. Rock and Mineral Analysis, 2021, 40(2): 250-261. doi: 10.15898/j.cnki.11-2131/td.202003090028
Citation: XUE Jia. Determination of Valences of As, Cr, Sb and Se in Soil Using HPLC-HG-AFS[J]. Rock and Mineral Analysis, 2021, 40(2): 250-261. doi: 10.15898/j.cnki.11-2131/td.202003090028

Determination of Valences of As, Cr, Sb and Se in Soil Using HPLC-HG-AFS

  • BACKGROUND

    The environmental effects of heavy metal pollutants in soil are closely related to their inorganic valence. The determination of the valences of As, Cr, Sb and Se elements is of great significance, but due to the easy conversion between the valences, the determination is difficult and the degree of standardization is low. The geological industry standard DD2005-3 recommends the use of ion exchange resin separation, atomic fluorescence spectrometry to determine the valences of As, Sb, and Se, and graphite furnace atomic absorption spectrometry (GFAAS) to determine the valence of Cr. The preparation of these methods is cumbersome, the number of measurements is large, the workload is large, and the existence of other element forms can also cause errors in the results.

    OBJECTIVES

    To establish a set of methods suitable for determining the valences of water-soluble and exchangeable As, Cr, Sb and Se in soil samples.

    METHODS

    The valences of As, Sb and Se were separated and determined by HPLC-HG-AFS after 30 min extraction in a water bath of 50℃. The processes were simpler and more accurate than the recommended subtraction processes by AFS. To avoid the masking action of some extracting agent, the method of selective determination of Sb(Ⅲ), Sb(Ⅴ), Se(Ⅳ) and Se(Ⅵ) by AFS was developed, which has the advantage of low instrument cost. As for Cr(Ⅲ) and Cr(Ⅵ), after separation by ion-exchange resin, they were determined by ICP-MS, which has higher sensitivity than the recommended GFAAS.

    RESULTS

    The detection limits of As(Ⅲ), As(Ⅴ), Cr(Ⅲ), Cr(Ⅵ), Sb(Ⅲ), Sb(Ⅴ), Se(Ⅳ) and Se(Ⅵ) was ≤ 0.02μg/g, with the RSD of 3.8%-10.7% and the recovery of 91.0%-106.0%. These methods were successfully applied to the analysis of geological samples, and all indices met the quality requirements of DD2005-3.

    CONCLUSIONS

    Compared with non-chromatographic methods, newly established methods by HPLC-HG-AFS can determine multiple components simultaneously. At the same time, preliminary studies have shown that the valence content of elements in the soil is not high, and lacks correlation with the total amount of soil.

  • 加载中
  • [1] 章海波, 骆永明, 李远, 等. 中国土壤环境质量标准中重金属指标的筛选研究[J]. 土壤学报, 2014, 51(3): 429-438.

    Google Scholar

    Zhang H B, Luo Y M, Li Y, et al. Screening of criteria for heavy metals for revision of the national standard for soil environmental quality of China[J]. Acta Pedologica Sinica, 2014, 51(3): 429-438.

    Google Scholar

    [2] 于兆水, 张勤. 氢化物发生-原子荧光光谱法测定土壤中水溶态和可交换态锑(Ⅲ)和锑(Ⅴ)[J]. 岩矿测试, 2010, 29(1): 34-38. doi: 10.3969/j.issn.0254-5357.2010.01.008

    CrossRef Google Scholar

    Yu Z S, Zhang Q. Determination of water soluble and exchangeable Sb(Ⅲ) and Sb(Ⅴ) in soil samples by hydride generation-atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2010, 29(1): 34-38. doi: 10.3969/j.issn.0254-5357.2010.01.008

    CrossRef Google Scholar

    [3] 周康民, 汤志云, 肖灵, 等. 土壤及水中As价态分析方法研究[J]. 地质学刊, 2008, 32(3): 189-197. doi: 10.3969/j.issn.1674-3636.2008.03.006

    CrossRef Google Scholar

    Zhou K M, Tang Z Y, Xiao L, et al. Study on analysis method of As valence state in soil and water mass[J]. Journal of Geology, 2008, 32(3): 189-197. doi: 10.3969/j.issn.1674-3636.2008.03.006

    CrossRef Google Scholar

    [4] 郝志红, 杨帆, 邢夏, 等. 氢化物发生-原子荧光光谱法测定地质样品中的锑(Ⅲ)和锑(Ⅴ)[J]. 物探与化探, 2012, 36(6): 947-951.

    Google Scholar

    Hao Z H, Yang F, Xing X, et al. The determination of antimony(Ⅲ) and of antimony(Ⅴ) in geological samples by hydride generation-atomic fluorescence spectrometry[J]. Geophysical & Geochemical Exploration, 2012, 36(6): 947-951.

    Google Scholar

    [5] 肖融, 张新智, 王昌钊, 等. 氢化物发生原子荧光光谱法测量化妆品中Sb的价态[J]. 分析仪器, 2012(1): 85-90. doi: 10.3969/j.issn.1001-232X.2012.01.021

    CrossRef Google Scholar

    Xiao R, Zhang X Z, Wang C Z, et al. Valent speciation analysis of antimony in cosmetics by hydride generation atomic fluorescence spectrometry[J]. Analytical Instrument, 2012(1): 85-90. doi: 10.3969/j.issn.1001-232X.2012.01.021

    CrossRef Google Scholar

    [6] 刘丽瑛. 土壤中三价锑和五价锑含量的测定[J]. 广东化工, 2018, 45(12): 230-231, 229. doi: 10.3969/j.issn.1007-1865.2018.12.102

    CrossRef Google Scholar

    Liu L Y. Determination of trivalent antimony and pentavalent antimony in soil[J]. Guangdong Chemical Industry, 2018, 45(12): 230-231, 229. doi: 10.3969/j.issn.1007-1865.2018.12.102

    CrossRef Google Scholar

    [7] 王梅, 张红香, 邹志辉, 等. 原子荧光光谱法测定富硒螺旋藻片中不同形态、价态的硒[J]. 食品科学, 2011, 32(6): 179-182.

    Google Scholar

    Wang M, Zhang H X, Zou Z H, et al. Determination of chemical state and valence for selenium in Se-enriched S. pirulina tablets by atomic fluorescence spectrometry[J]. Journal of Food Science, 2011, 32(6): 179-182.

    Google Scholar

    [8] 薛超群, 郭敏. 氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒[J]. 岩矿测试, 2012, 31(6): 980-984. doi: 10.3969/j.issn.0254-5357.2012.06.012

    CrossRef Google Scholar

    Xue C Q, Guo M. Analysis of different valence states of selenium in geological samples by hydride generation-atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2012, 31(6): 980-984. doi: 10.3969/j.issn.0254-5357.2012.06.012

    CrossRef Google Scholar

    [9] Issa N B, Rajakovic-Ognjanovic V N, Jovanovic B M, et al. Determination of inorganic arsenic species in natural waters-Benefits of separation and preconcentration on ion exchange and hybrid resins[J]. Analytica Chimica Acta, 2010, 673(2): 185-193. doi: 10.1016/j.aca.2010.05.027

    CrossRef Google Scholar

    [10] 杨总, 吴琼玉, 陈锋. 地质样品中铬的价态分析方法研究[J]. 分析试验室, 2009, 28(A1): 118-121.

    Google Scholar

    Yan Z, Wu Q Y, Chen F. Research on geological sample analysis of valence states of chromium[J]. Chinese Journal of Analysis Laboratory, 2009, 28(A1): 118-121.

    Google Scholar

    [11] 闫美, 谢晨星, 朱智惠, 等. 保健食品中三价铬与六价铬的分离与测定[J]. 食品研究与开发, 2016, 37(7): 171-175. doi: 10.3969/j.issn.1005-6521.2016.07.042

    CrossRef Google Scholar

    Yan M, Xie C X, Zhu Z H, et al. The research on the conditions of hexavalent chromium convert to trivalent chromium in healthy food[J]. Food Research and Development, 2016, 37(7): 171-175. doi: 10.3969/j.issn.1005-6521.2016.07.042

    CrossRef Google Scholar

    [12] Zhang N, Suleiman J S, He M, et al. Chromium(Ⅲ)-imprinted silica gel for speciation analysis of chromium in environmental water sample with ICP-MS Detection[J]. Talanta, 2008, 75(2): 536-543. doi: 10.1016/j.talanta.2007.11.059

    CrossRef Google Scholar

    [13] 吴少雄, 邢志, 陈红兵, 等. 磁性纳米四氧化三铁选择性富集-电感耦合等离子体原子发射光谱测定砷[J]. 分析化学, 2009, 37(5): 711-714. doi: 10.3321/j.issn:0253-3820.2009.05.017

    CrossRef Google Scholar

    Wu S X, Xing Z, Chen H B, et al. Nanomagnetic material ferriferrous oxide separation/enrichment and inductively coupled plasma-atomic emission spectrometry for determination of arsenic[J]. Chinese Journal of Analytical Chemistry, 2009, 37(5): 711-714. doi: 10.3321/j.issn:0253-3820.2009.05.017

    CrossRef Google Scholar

    [14] 黄红霞. 离子色谱-电感耦合等离子体质谱联用测定肉类食品中的无机砷[J]. 理化检验(化学分册), 2010, 46(10): 1122-1124.

    Google Scholar

    Huang H X. ICP-MS determination of inorganic arsenic in meet food with IC separation[J]. Physical Testing and Chemical Analysis Part B (Chemical Analysis), 2010, 46(10): 1122-1124.

    Google Scholar

    [15] Tonietto G B, Godoy J B, Oliveira A C, et al. Simultaneous speciation of arsenic (As(Ⅲ), MMA, DMA, and As(Ⅴ)) and selenium (Se(Ⅳ), Se(Ⅵ), and SeCN-) in petroleum refinery aqueous streams[J]. Analytical and Bioanalytical Chemistry, 2010, 397: 1755-1761. doi: 10.1007/s00216-010-3764-y

    CrossRef Google Scholar

    [16] Conklin S D, Shockey N, Kubachka K, et al. Development of an ion chromatography-inductively coupled plasma-mass spectrometry method to determine inorganic arsenic in liver from chickens treated with roxarsone[J]. Journal of Agricultural and Food Chemistry, 2012, 60(37): 9394-9404. doi: 10.1021/jf302366a

    CrossRef Google Scholar

    [17] 林凯, 姜杰, 黎雪慧, 等. 高效液相-原子荧光光谱法(HPLC-AFS)测定大米中不同形态砷方法的研究[J]. 实用预防医学, 2013, 20(1): 98-100. doi: 10.3969/j.issn.1006-3110.2013.01.038

    CrossRef Google Scholar

    Lin K, Jiang J, Li X H, et al. Speciation analysis for arsenic in rice by HPLC-AFS[J]. Practical Preventive Medicine, 2013, 20(1): 98-100. doi: 10.3969/j.issn.1006-3110.2013.01.038

    CrossRef Google Scholar

    [18] 张硕, 弓振斌. 高灵敏度原子荧光光谱系统应用于砷、硒形态分析的研究[J]. 分析测试学报, 2014, 33(9): 979-985. doi: 10.3969/j.issn.1004-4957.2014.09.001

    CrossRef Google Scholar

    Zhang S, Gong Z B. Study on arsenic/selenium speciation analysis by a modified high sensitive atomic fluorescence spectrometric system[J]. Journal of Instrumental Analysis, 2014, 33(9): 979-985. doi: 10.3969/j.issn.1004-4957.2014.09.001

    CrossRef Google Scholar

    [19] 刘佩佩, 梅勇, 宋冠仪, 等. 土壤中形态砷的高效液相色谱-氢化物发生-原子荧光测定方法[J]. 现代预防医学, 2016, 43(24): 4500-4506.

    Google Scholar

    Liu P P, Mei Y, Song G Y, et al. Determination of arsenic in soil by HPLC-hydride generator-AFS[J]. Modern Preventive Medicine, 2016, 43(24): 4500-4506.

    Google Scholar

    [20] 陈玉红, 米健秋, 徐陆正, 等. 毛细管电泳-电感耦合等离子体质谱法联用(CE-ICP/MS)测定八种砷的化合物[J]. 环境化学, 2011, 30(7): 1374-1377.

    Google Scholar

    Chen Y H, Mi J Q, Xu L Z, et al. Determination of eight arsenic compounds by capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP/MS)[J]. Environmental Chemistry, 2011, 30(7): 1374-1377.

    Google Scholar

    [21] 黎飞, 王扬, 张成, 等. HPLC/ICP-MS法测定水质中Cr(Ⅲ)和Cr(Ⅵ)的研究[J]. 宁波大学学报, 2012, 25(3): 13-16. doi: 10.3969/j.issn.1001-5132.2012.03.003

    CrossRef Google Scholar

    Li F, Wang Y, Zhang C, et al. Determination of chromium species Cr(Ⅲ) and Cr(Ⅵ) in water sample by HPLC/ICP-MS[J]. Journal of Ningbo University, 2012, 25(3): 13-16. doi: 10.3969/j.issn.1001-5132.2012.03.003

    CrossRef Google Scholar

    [22] 黄文耀, 张颖. 反相离子对色谱-电感耦合等离子体质谱法测定明胶空心胶囊中铬的形态[J]. 中国食品卫生杂志, 2014, 26(6): 566-569.

    Google Scholar

    Huang W Y, Zhang Y. Determination of chromium form Cr(Ⅲ) and Cr(Ⅵ) in the gelatin hollow capsule by RPIC/ICP-MS[J]. Chinese Journal of Food Hygiene, 2014, 26(6): 566-569.

    Google Scholar

    [23] 田勇, 刘崇华, 方晗, 等. 共沉淀法辅助分离-离子色谱与电感耦合等离子体质谱联用测定玩具材料中三价铬及超痕量六价铬[J]. 分析测试学报, 2015, 34(6): 706-710. doi: 10.3969/j.issn.1004-4957.2015.06.014

    CrossRef Google Scholar

    Tian Y, Liu Z H, Fang H, et al. Determination of Cr(Ⅲ) and ultratrace Cr(Ⅵ) in toy materials by co-precipitation assisted separation-ion chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2015, 34(6): 706-710. doi: 10.3969/j.issn.1004-4957.2015.06.014

    CrossRef Google Scholar

    [24] 胡玉军, 覃毅磊, 赖毅东. HPLC-ICP-MS测定乳制品中的三价铬和六价铬[J]. 现代食品科技, 2015, 34(6): 301-305.

    Google Scholar

    Hu Y J, Qin Y L, Lai Y D. Determination of chromium(Ⅲ) and chromium(Ⅵ) in dairy products by HPLC-ICP-MS[J]. Modern Food Science and Technology, 2015, 34(6): 301-305.

    Google Scholar

    [25] 禄春强. 液相色谱-电感耦合等离子体质谱法测定水嘴中六价铬和三价铬析出量[J]. 分析测试学报, 2016, 35(12): 1639-1642. doi: 10.3969/j.issn.1004-4957.2016.12.022

    CrossRef Google Scholar

    Lu C Q. Determination of chromium(Ⅵ) and chromium(Ⅲ) stripped from stopcock by liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2016, 35(12): 1639-1642. doi: 10.3969/j.issn.1004-4957.2016.12.022

    CrossRef Google Scholar

    [26] 俞凌云, 罗杨, 甘霖, 等. FI-火焰原子吸收光谱法同时测定皮革中三价铬和六价铬[J]. 中国皮革, 2014, 43(13): 34-37.

    Google Scholar

    Yu L Y, Luo Y, Gan L, et al. Determination of Cr(Ⅲ) and Cr(Ⅵ) in leather by FI-flame atomic absorption spectrometry[J]. China Leather, 2014, 43(13): 34-37.

    Google Scholar

    [27] Liu F, Le X C, McKnight-Whitford A, et al. Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China[J]. Environmental Geochemistry and Health, 2010, 32: 401-413. doi: 10.1007/s10653-010-9284-z

    CrossRef Google Scholar

    [28] Séby F, Gleyzes C, Grosso O, et al. Speciation of antimony in injectable drugs used for Leishmaniasis treatment (Glucantime)by HPLC-ICP-MS and DPP[J]. Analytical and Bioanalytical Chemistry, 2012, 404: 2939-2948. doi: 10.1007/s00216-012-6427-3

    CrossRef Google Scholar

    [29] 侯逸众, 范云场, 朱岩, 等. 离子色谱-双阳极电化学氢化物发生-原子荧光光谱法测定当归中Sb(Ⅲ)和Sb(Ⅴ)[J]. 分析试验室, 2009, 28(10): 38-40. doi: 10.3969/j.issn.1000-0720.2009.10.010

    CrossRef Google Scholar

    Hou Y Z, Fan Y C, Zhu Y, et al. Antimony speciation analysis in angelica by ion chromatography-bianode electrochemical hydride generation-atomic fluorescence spectrometric detection[J]. Chinese Journal of Analysis Laboratory, 2009, 28(10): 38-40. doi: 10.3969/j.issn.1000-0720.2009.10.010

    CrossRef Google Scholar

    [30] Yang H L, He M C, Wang X Q. Concentration and speciation of antimony and arsenic in soil profiles around the world's largest antimony metallurgical area in China[J]. Environmental Geochemistry and Health, 2015, 37(1): 21-33. doi: 10.1007/s10653-014-9627-2

    CrossRef Google Scholar

    [31] Quiroz W, Astudillo F, Bravo M, et al. Antimony speciation in soils, sediments and volcanic ashes by microwave extraction and HPLC-HG-AFS detection[J]. Microchemical Journal, 2016, 129: 111-116. doi: 10.1016/j.microc.2016.06.016

    CrossRef Google Scholar

    [32] Jitaru P, Goenaga-Infante H, Vaslin-Reimann S, et al. A systematic approach to the accurate quantification of selenium in serum selenoalbumin by HPLC-ICP-MS[J]. Analytica Chimica Acta, 2010, 657(2): 100-107. doi: 10.1016/j.aca.2009.10.037

    CrossRef Google Scholar

    [33] Hsieh Y J, Jiang S J. Determination of selenium compounds in food supplements using reversed-phase liquid chromatography-inductively coupled plasma mass spectrometry[J]. Microchemical Journal, 2013, 110(9): 1-7.

    Google Scholar

    [34] 秦冲, 施畅, 万秋月, 等. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J]. 岩矿测试, 2018, 37(6): 664-670.

    Google Scholar

    Qin C, Shi C, Wan Q Y, et al. Speciation analysis of inorganic selenium in soil by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670.

    Google Scholar

    [35] Xie X, Feng C, Ye M, et al. Speciation determination of selenium in seafood by high-performance ion-exchange chromatography-hydride generation-atomic fluorescence spectrometry[J]. Food Analytical Methods, 2015, 8: 1739-1745. doi: 10.1007/s12161-014-0055-9

    CrossRef Google Scholar

    [36] 黄笑寒, 李玉锋, 林婧, 等. AE-HG-AFS测定长期汞暴露人群补硒后尿中硒的形态[J]. 分析试验室, 2012, 31(1): 11-15. doi: 10.3969/j.issn.1000-0720.2012.01.003

    CrossRef Google Scholar

    Huang X H, Li Y H, Lin J, et al. On-line analysis of selenium species in urine samples from mercury-exposed persons supplemented with selenium-enriched yeast by AE-HG-AFS[J]. Chinese Journal of Analysis Laboratory, 2012, 31(1): 11-15. doi: 10.3969/j.issn.1000-0720.2012.01.003

    CrossRef Google Scholar

    [37] Chen Y W, Belzile N. High performance liquid chromatography coupled to atomic fluorescence spectrometry for the speciation of the hydride and chemical vapour-forming elements As, Se, Sb and Hg: Acritical review[J]. Analytica Chimica Acta, 2010, 671(1-2): 9-26. doi: 10.1016/j.aca.2010.05.011

    CrossRef Google Scholar

    [38] 李刚, 胡斯宪, 陈琳玲. 原子荧光光谱分析技术的创新与发展[J]. 岩矿测试, 2013, 32(3): 358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003

    CrossRef Google Scholar

    Li G, Hu S X, Chen L L, et al. Innovation and development for atomic fluorescence spectrometry analysis[J]. Rock and Mineral Analysis, 2013, 32(3): 358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003

    CrossRef Google Scholar

    [39] 刘硕勋, 黄天舒, 颜耕, 等. 土壤和沉积物中重金属锑及其价态分析方法研究进展[J]. 环境化学, 2018, 37(2): 271-278.

    Google Scholar

    Liu S X, Huang T S, Yan G, et al. Research progress on the analytical methods and speciation antimony in soils and sediments[J]. Environmental Chemistry, 2018, 37(2): 271-278.

    Google Scholar

    [40] 陈凌锋. 糙米中砷形态检测方法的对比研究[J]. 食品安全质量检测学报, 2020, 11(9): 6132-6135.

    Google Scholar

    Chen L F. Comparative study on the detection methods of arsenic in rice[J]. Journal of Food Safety and Quality, 2020, 11(17): 6132-6135.

    Google Scholar

    [41] 赵谋明, 郑泽洋, 刘小玲. 食品中硒的总量及化学形态分析研究进展[J]. 南方农业学报, 2019, 50(12): 2787-2796.

    Google Scholar

    Zhao M M, Zheng Z Y, Liu X L. Total content determination and chemical speciation analysis of selenium in food: A review[J]. Journal of Southern Agriculture, 2019, 50(12): 2787-2796.

    Google Scholar

    [42] 吕亚宁, 宋伟, 沈贵兰, 等. 高效液相色谱-电感耦合等离子体质谱法同时测定果汁饮品中砷、硒与铬元素的无机形态[J]. 分析测试学报, 2018, 37(9): 1087-1091. doi: 10.3969/j.issn.1004-4957.2018.09.018

    CrossRef Google Scholar

    Lv Y N, Song W, Shen G L, et al. Simultaneous determination of inorganic speciations of As, Se and Cr in juice drinks by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2018, 37(9): 1087-1091. doi: 10.3969/j.issn.1004-4957.2018.09.018

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(3395) PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint