Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 2
Article Contents

Xin-wei LI, Chao LI, Li-min ZHOU, Hong ZHAO. Accurate Determination of the Age of the Carbonaceous Mudstone of the Ordovician-Silurian Boundary in Zheng'an County, Guizhou Province by Re-Os Isotope Dating Method and Its Application in Paleoenvironmental Inversion[J]. Rock and Mineral Analysis, 2020, 39(2): 251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116
Citation: Xin-wei LI, Chao LI, Li-min ZHOU, Hong ZHAO. Accurate Determination of the Age of the Carbonaceous Mudstone of the Ordovician-Silurian Boundary in Zheng'an County, Guizhou Province by Re-Os Isotope Dating Method and Its Application in Paleoenvironmental Inversion[J]. Rock and Mineral Analysis, 2020, 39(2): 251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116

Accurate Determination of the Age of the Carbonaceous Mudstone of the Ordovician-Silurian Boundary in Zheng'an County, Guizhou Province by Re-Os Isotope Dating Method and Its Application in Paleoenvironmental Inversion

More Information
  • BACKGROUNDOrganic-rich sedimentary rocks of the Wufeng-Longmaxi Formation are widely developed in the Ordovician-Silurian boundary of the Upper Yangtze platform in China, which is rich in shale gas resources. Using the Re-Os isotope system to study this set of sedimentary formations, not only can the precise age of the formation be obtained, but also the sedimentary environment of this period based on the enrichment mechanism of Re and Os elements can be inferred. This provides a more reasonable explanation for the trigger mechanism of the second large-scale biological extinction event in Earth's history. OBJECTIVESTo accurately constrain the age of carbonaceous mudstone and infer the conditions of the paleoenvironment. METHODSThe 11 carbonaceous mudstone samples from dirll core of Banzhu No.1, Zheng'an County, Guizhou Province were studied. These dirll core samples were continuous across the boundary of the Ordovician Wufeng Formation-Silurian Longmaxi Formation. Through the high precision Re-Os isotopic dating of the 11 samples, the Ordovician-Silurian boundary stratigraphic age was obtained. RESULTSThe Re-Os isotope age was calculated to be 443.68±6.24Ma[2σ, n=7, (187Os/188Os)i=0.699±0.019, MSWD=0.55]. The results were highly consistent with the age (443.7±1.5Ma) published by the International Commission on Stratigraphy, which provided a direct and accurate age basis for the Ordovician-Silurian boundary. Os isotope characteristics showed that amounts of terrigenous detrital were involved in the diagenesis, the occurrence of multi-stage volcanic activities and the transition from glacial period to interglacial period. The Re-Os isotopic features of the continuous sedimentary strata reflected that the sedimentary environment of the Ordovician Wufeng Formation-Silurian Longmaxi Formation had undergone the change of oxygen enrichment-oxygen enrichment-rich oxygen enrichment in this study area. CONCLUSIONSHirnantian glaciation events and volcanic eruption caused biological extinction and together promoted organic matter enrichment, providing hydrocarbon generation potential for the Wufeng Formation-Longmaxi Formation organic-rich sedimentary rocks.
  • 加载中
  • [1] Tucker R D, Krogh T E, Ross R J, et al.Time-scale calibration by high-precision U-Pb zircon dating of interstratified volcanic ashes in the Ordovician and Lower Silurian stratotypes of Britain[J].Earth and Planetary Science Letters, 1990, 100(1-3):51-58. doi: 10.1016/0012-821X(90)90175-W

    CrossRef Google Scholar

    [2] Ghavidel-Syooki M, Hassanzadeh J, Vecoli M.Paly-nology and isotope geochronology of the Upper Ordovician-Silurian successions (Ghelli and Soltan Maidan Formations) in the Khoshyeilagh area, Eastern Alborz Range, Northern Iran; Stratigraphic and palaeogeographic implications[J].Review of Palaeobotany & Palynology, 2011, 164(3-4):251-271.

    Google Scholar

    [3] Cramer B D, Condon D J, Soderlund U, et al.U-Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the 'Big Crisis'[J].Geological Society of America Bulletin, 2012, 124(11-12):1841-1857. doi: 10.1130/B30642.1

    CrossRef Google Scholar

    [4] Cooper M R, Crowley Q, Rushton A W A.New age constraints for the Ordovician Tyrone volcanic group, Northern Ireland[J].Journal of the Geological Society, 2008, 165(1):1-19. doi: 10.1144/0016-76492007-072

    CrossRef Google Scholar

    [5] 胡艳华, 刘健, 周明忠, 等.奥陶纪与志留纪钾质斑脱岩研究评述[J].地球化学, 2009, 38(4):393-404. doi: 10.3321/j.issn:0379-1726.2009.04.010

    CrossRef Google Scholar

    Hu Y H, Liu J, Zhou M Z, et al.An overview of Ordovician and Silurian K-bentonites[J].Geochimica, 2009, 38(4):393-404. doi: 10.3321/j.issn:0379-1726.2009.04.010

    CrossRef Google Scholar

    [6] Hu Y H, Zhou J B, Song B, et al.SHRIMP zircon U-Pb dating from K-bentonite in the top of Ordovician of Wangjiawan Section, Yichang, Hubei, China[J].Science in China Series D (Earth Sciences), 2008, 51(4):493-498. doi: 10.1007/s11430-008-0028-1

    CrossRef Google Scholar

    [7] Li Y F, Zhang T W, Shao D Y, et al.New U-Pb zircon age and carbon isotope records from the Lower Silurian Longmaxi Formation on the Yangtze Platform, South China:Implications for stratigraphic correlation and environmental change[J].Chemical Geology, 2019, 509:249-260. doi: 10.1016/j.chemgeo.2019.02.003

    CrossRef Google Scholar

    [8] 罗华, 何仁亮, 潘龙克, 等.湖北宣恩县麻阳寨晚奥陶-早志留世龙马溪组斑脱岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].资源环境与工程, 2016, 30(4):547-550.

    Google Scholar

    Luo H, He R L, Pan L K, et al.LA-ICP-MS zircon U-Pb age and its significance of Late Ordovician-Early Silurian Longmaxi bentonite[J].Resources Environment & Engineering, 2016, 30(4):547-550.

    Google Scholar

    [9] 谢尚克, 汪正江, 王剑, 等.湖南桃源郝坪奥陶系五峰组顶部斑脱岩LA-ICP-MS锆石U-Pb年龄[J].沉积与特提斯地质, 2012, 32(4):65-69. doi: 10.3969/j.issn.1009-3850.2012.04.010

    CrossRef Google Scholar

    Xie S K, Wang Z J, Wang J, et al.LA-ICP-MS zircon U-Pb dating of the bentonites from the uppermost part of the Ordovician Wufeng Formation in the Haoping Section, Taoyuan, Hunan[J].Sedimentary Geology and Tethyan Geology, 2012, 32(4):65-69. doi: 10.3969/j.issn.1009-3850.2012.04.010

    CrossRef Google Scholar

    [10] 熊国庆, 王剑, 李园园, 等.大巴山西段上奥陶统-下志留统五峰组-龙马溪组斑脱岩锆石U-Pb年龄及其地质意义[J].沉积与特提斯地质, 2017, 37(2):46-58. doi: 10.3969/j.issn.1009-3850.2017.02.006

    CrossRef Google Scholar

    Xiong G Q, Wang J, Li Y Y, et al.Zircon U-Pb dating and geological significance of the bentonites from the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in Western Daba Mountains[J].Sedimentary Geology and Tethyan Geology, 2017, 37(2):46-58. doi: 10.3969/j.issn.1009-3850.2017.02.006

    CrossRef Google Scholar

    [11] 熊国庆, 王剑, 李园园, 等.南大巴山东段上奥陶统五峰组-下志留统龙马溪组钾质斑脱岩锆石U-Pb年龄及其构造意义[J].地质学报, 2019, 93(4):843-864.

    Google Scholar

    Xiong G Q, Wang J, Li Y Y, et al.Zircon U-Pb dating of K-bentonite from Late Ordovician Wufeng Formation and Earlier Silurian Longmaxi Formation in the eastern section of South Dabashan and its tectonic sigification[J].Acta Geologica Sinica, 2019, 93(4):843-864.

    Google Scholar

    [12] Ge X Y, Mou C L, Wang C S, et al.Mineralogical and geochemical characteristics of K-bentonites from the Late Ordovician to the Early Silurian in South China and their geological significance[J].Geological Journal, 2019, 54(1):514-528. doi: 10.1002/gj.3201

    CrossRef Google Scholar

    [13] 卢斌, 邱振, 周杰, 等.四川盆地及周缘五峰组-龙马溪组钾质斑脱岩特征及其地质意义[J].地质科学, 2017, 52(1):186-202.

    Google Scholar

    Lu B, Qiu Z, Zhou J, et al.The characteristics and Wufeng Formation and geological significance of the K-bentonite in Longmaxi Formation in Sichuan Basin and its peripheral areas[J].Chinese Journal of Geology, 2017, 52(1):186-202.

    Google Scholar

    [14] Yan D T, Chen D Z, Wang Q C, et al.Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform, South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(1-2):32-39. doi: 10.1016/j.palaeo.2008.12.016

    CrossRef Google Scholar

    [15] Wang K, Chatterton B D E, Wang Y.An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks, Yangtze Sea, South China:Implications for CO2 changes during the Hirnantian glaciation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1-4):147-158. doi: 10.1016/S0031-0182(97)00046-1

    CrossRef Google Scholar

    [16] Delabroye A, Munnecke A, Vecoli M, et al. Phytoplankton dynamics across the Ordovician/Silurian boundary at low palaeolatitudes:Correlations with carbon isotopic and glacial events[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 312(1-2):0-97.

    Google Scholar

    [17] Fan J, Peng P, Melchin M J.Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1-4):160-169. doi: 10.1016/j.palaeo.2009.03.007

    CrossRef Google Scholar

    [18] Liu Y, Li C, Algeo T J, et al.Global and regional controls on marine redox changes across the Ordovician-Silurian boundary in South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463:180-191. doi: 10.1016/j.palaeo.2016.10.006

    CrossRef Google Scholar

    [19] 汪啸风, 柴之芳.奥陶系与志留系界线处生物绝灭事件及其与铱和碳同位素异常的关系[J].地质学报, 1989, 60(3):65-74.

    Google Scholar

    Wang X F, Chai Z F.Terminal Ordovician mass extinction and its relationship to iridium and carbon isotope anomalies[J].Acta Geologica Sinica, 1989, 60(3):65-74.

    Google Scholar

    [20] Chen X, Rong J Y, Charles E, et al.Late Ordovician to Earliest Silurian graptolite and brachiopod biozonation from the Yangtze Region, South China, with a global correlation[J].Geological Magazine, 2000, 137(6):623-650. doi: 10.1017/S0016756800004702

    CrossRef Google Scholar

    [21] 林家善, 刘建清, 冯伟明, 等.黔北下志留统龙马溪组烃源岩有机地球化学特征及其古环境意义[J].沉积与特提斯地质, 2014, 34(2):79-85.

    Google Scholar

    Lin J S, Liu J Q, Feng W M, et al.Organic geochemical signatures and palaeo-environmental implications for the source rocks from the Lower Silurian Longmaxi Formation in Northern Guizhou[J].Sedimentary Geology and Tethyan Geology, 2014, 34(2):79-85.

    Google Scholar

    [22] 王辰, 刘建朝, 张海东, 等.湘西花垣地区奥陶-志留系沉积岩稀土元素地球化学特征及地质意义[J].矿物岩石地球化学通报, 2017, 36(3):534-595.

    Google Scholar

    Wang C, Liu J C, Zhang H D, et al.REE geochemical characteristics of Ordovician-Silurian sedimentary rocks in the Huayuan Area, Hunan Province and their geological significances[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3):534-595.

    Google Scholar

    [23] Yan D T, Chen D Z, Wang Q C, et al.Large-scale climatic fluctuations in the Latest Ordovician on the Yangtze Block, South China[J].Geology, 2010, 38(7):599-602. doi: 10.1130/G30961.1

    CrossRef Google Scholar

    [24] Gong Q, Wang X, Zhao L, et al.Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction[J].Scientific Reports, 2017, 7(1):5304-5310. doi: 10.1038/s41598-017-05524-5

    CrossRef Google Scholar

    [25] Jones D S, Martini A M, Fike D A, et al.A volcanic trigger for the Late Ordovician mass extinction? Mercury data from South China and Laurentia[J].Geology, 2017, 45(7):631-634. doi: 10.1130/G38940.1

    CrossRef Google Scholar

    [26] Finlay A J, Sebly D, Gröcke D R.Tracking the Hirnantian glaciation using Os isotopes[J].Earth and Planetary Science Letters, 2010, 293(3-4):339-348. doi: 10.1016/j.epsl.2010.02.049

    CrossRef Google Scholar

    [27] 李超, 屈文俊, 王登红, 等.Re-Os同位素在沉积地层精确定年及古环境反演中的应用进展[J].地球学报, 2014, 35(4):405-414.

    Google Scholar

    Li C, Qu W J, Wang D H, et al.The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeoenvironment[J].Acta Geoscientica Sinica, 2014, 35(4):405-414.

    Google Scholar

    [28] 李欣尉, 杨显德, 李超, 等.蒸馏法富集纯化Os实验条件研究及其在负离子热电离质谱测量中的应用[J].岩矿测试, 2018, 37(4):102-110.

    Google Scholar

    Li X W, Yang X D, Li C, et al.Study on the conditions for enrichment and purification of Os by microdistillation and its application in NTIMS measurements[J].Rock and Mineral Analysis, 2018, 37(4):102-110.

    Google Scholar

    [29] 李超, 王登红, 周利敏, 等.湖南鲁塘石墨矿Re-Os同位素研究[J].岩矿测试, 2017, 36(3):297-304.

    Google Scholar

    Li C, Wang D H, Zhou L M, et al.Study on the Re-Os isotope composition of graphite from the Lutang graphite deposit in Hunan Province[J].Rock and Mineral Analysis, 2017, 36(3):297-304.

    Google Scholar

    [30] Jenkins R J F, Acooper J, Compston W.Age and biostratigraphy of Early Cambrian tuffs from SE Australia and Southern China[J].Journal of the Geological Society, 2002, 159(6):645-658. doi: 10.1144/0016-764901-127

    CrossRef Google Scholar

    [31] Lanphere M A, Churkin M, Eberlein G D.Radiometric age of the monograptus cyphus graptolite zone in Southeastern Alaska-An estimate of the age of the Ordovician-Silurian boundary[J].Geological Magazine, 1977, 114(1):15-24. doi: 10.1017/S0016756800043387

    CrossRef Google Scholar

    [32] Fullager P D, Bottino M L.Radiometric age of the volcanics at Arisaig, Nova Scotia, and the Ordovician-Silurian boundary[J].Canadian Journal of Earth Sciencen, 1968, 5(2):311-317. doi: 10.1139/e68-031

    CrossRef Google Scholar

    [33] Jaffe L A, Peucker-Ehrenbrink B, Petsch S T.Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J].Earth and Planetary Science Letters, 2002, 198(3-4):339-353. doi: 10.1016/S0012-821X(02)00526-5

    CrossRef Google Scholar

    [34] Creaser R A, Sannigrahi P, Chacko T, et al.Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks:A test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin[J].Geochimica et Cosmochimica Acta, 2002, 66(19):3441-3452. doi: 10.1016/S0016-7037(02)00939-0

    CrossRef Google Scholar

    [35] 李超, 屈文俊, 王登红, 等.富有机质地质样品Re-Os同位素体系研究进展[J].岩石矿物学杂志, 2010, 29(4):421-430. doi: 10.3969/j.issn.1000-6524.2010.04.009

    CrossRef Google Scholar

    Li C, Qu W J, Wang D H, et al.Advances in the study of the Re-Os isotopic system of organic-rich samples[J].Acta Petrologica et Mineralogica, 2010, 29(4):421-430. doi: 10.3969/j.issn.1000-6524.2010.04.009

    CrossRef Google Scholar

    [36] Kendall B, Creaser R A, Sebly D.187Re-187Os Geochronology of Precambrian Organic-rich Sedimentary Rocks[M].London:Geological Society, 2009, 326:85-107.

    Google Scholar

    [37] 徐伦勋, 肖传桃, 龚文平, 等.论扬子地区上奥陶统五峰组观音桥段的深海成因[J].地质学报, 2004, 78(6):726-732. doi: 10.3321/j.issn:0001-5717.2004.06.002

    CrossRef Google Scholar

    Xu L X, Xiao C T, Gong W P, et al.A study on the deep-sea sediment of the Guanyinqiao Member of the Upper Ordovician Wufeng Formation in the Yangtze Area[J].Acta Geologica Sinica, 2004, 78(6):726-732. doi: 10.3321/j.issn:0001-5717.2004.06.002

    CrossRef Google Scholar

    [38] 王同, 杨克明, 熊亮, 等.川南地区五峰组-龙马溪组页岩层序地层及其对储层的控制[J].石油学报, 2015, 36(8):915-925.

    Google Scholar

    Wang T, Yang K M, Xiong L, et al.Shale sequence stratigraphy of Wufeng-Longmaxi Formation in Southern Sichuan and their control on reservoirs[J].Acta Petrolei Sinica, 2015, 36(8):915-925.

    Google Scholar

    [39] Cohen A S.The rhenium-osmium isotope system:Applications to geochronological and palaeoenviron-mental problems[J].Journal of the Geological Society, 2004, 161(4):729-734. doi: 10.1144/0016-764903-084

    CrossRef Google Scholar

    [40] Levasseur S, Birck J, Allegre C J.Direct measurement of femtomoles of osmium and the 187Os/186Os ratio in seawater[J].Science, 1998, 282(5387):272-274. doi: 10.1126/science.282.5387.272

    CrossRef Google Scholar

    [41] 赵鸿, 李超, 江小均, 等.浙江长兴"金钉子"灰岩Re-Os富集机制研究[J].地质学报, 2015, 89(10):1783-1791. doi: 10.3969/j.issn.0001-5717.2015.10.006

    CrossRef Google Scholar

    Zhao H, Li C, Jiang X J, et al.Direct radiometric dating of limestone from Changxing Permian-Triassic Boundary using the Re-Os geochronometer[J].Acta Geologica Sinica, 2015, 89(10):1783-1791. doi: 10.3969/j.issn.0001-5717.2015.10.006

    CrossRef Google Scholar

    [42] Trotter J A, Williams I S, Barnes C R, et al.Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry[J].Science, 2008, 321(5888):550-554. doi: 10.1126/science.1155814

    CrossRef Google Scholar

    [43] Finnegan S, Bergmann K, Eiler J M, et al.The magnitude and duration of Late Ordovician-Early Silurian glaciation[J].Science, 2011, 331(6019):903-906. doi: 10.1126/science.1200803

    CrossRef Google Scholar

    [44] Finnegan S, Heim N A, Peters S E, et al.Climate change and the selective signature of the Late Ordovician mass extinction[J].Proceedings of the National Academy of Science, 2012, 109(18):6829-6834. doi: 10.1073/pnas.1117039109

    CrossRef Google Scholar

    [45] Zhou L, Algeo T J, Shen J, et al.Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420:223-234. doi: 10.1016/j.palaeo.2014.12.012

    CrossRef Google Scholar

    [46] Cramer B D, Saltzman M R.Sequestration of 12C in the deep ocean during the Early Wenlock (Silurian) positive carbon isotope excursion[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(3-4):333-349. doi: 10.1016/j.palaeo.2005.01.009

    CrossRef Google Scholar

    [47] Saltzman M R, Young S A.Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from Western Laurentia[J].Geology, 2005, 33(2):109-112. doi: 10.1130/G21219.1

    CrossRef Google Scholar

    [48] Young S A, Saltzman M R, Bergström S A.Upper Ordovician (Mohawkian) carbon isotope (δ13C) stratigraphy in Eastern and Central North America:Regional expression of a perturbation of the global carbon cycle[J].Palaeogeography, Palaeoceanography, Palaeoclimatology, 2005, 222(1-2):53-76. doi: 10.1016/j.palaeo.2005.03.008

    CrossRef Google Scholar

    [49] Sheehan P M.The Late Ordovician mass extinction[J].Annual Reviews of Earth and Planetary Sciences, 2001, 29(29):331-364.

    Google Scholar

    [50] Rasmussen C M Ø, Harper D A T.Interrogation of distributional data for the End Ordovician crisis interval:Where did disaster strike?[J].Geological Journal, 2011, 46(5):478-500.

    Google Scholar

    [51] Luo G, Algeo T J, Zhan R, et al.Perturbation of the marine nitrogen cycle during the Late Ordovician glaciation and mass extinction[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448:339-348. doi: 10.1016/j.palaeo.2015.07.018

    CrossRef Google Scholar

    [52] Melchin M J, Holmden C.Carbon isotope chemostra-tigraphy of the Llandovery in Arctic Canada:Implications for global correlation and sea-level change[J].GFF, 2006, 128(2):173-180. doi: 10.1080/11035890601282173

    CrossRef Google Scholar

    [53] Underwood C J, Crowley S F, Marshall J D, et al.High-resolution carbon isotope stratigraphy of the basal Silurian stratotype (Dob's Linn, Scotland) and its global correlation[J].Journal of the Geological Society, 1997, 154(4):709-718. doi: 10.1144/gsjgs.154.4.0709

    CrossRef Google Scholar

    [54] Kaljo D, Martma T, Mannik P, et al.Implications of Gondwana glaciations in the Baltic Late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity[J].Bulletin de la Société Géologique de France, 2003, 174(1):59-66. doi: 10.2113/174.1.59

    CrossRef Google Scholar

    [55] Vecoli M, Riboulleau A, Versteegh G J M.Palynology, organic geochemistry and carbon isotope analysis of a Latest Ordovician through Silurian clastic succession from borehole Tt1, Ghadamis Basin, Southern Tunisia, North Africa:Palaeoenvironmental interpretation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(3-4):378-394. doi: 10.1016/j.palaeo.2008.05.015

    CrossRef Google Scholar

    [56] Munnecke A, Samtleben C, Bickert T.The Ireviken Event in the Lower Silurian of Gotland, Swede-relation to similar Palaeozoic and Proterozoic events[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 195(1):99-124.

    Google Scholar

    [57] Cramer B D, Brett C E, Melchin M J, et al.Revised correlation of the Silurian provincial series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy[J].Lethaia, 2011, 44(2):185-202. doi: 10.1111/j.1502-3931.2010.00234.x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(2411) PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint