Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 5
Article Contents

Chao LI, Deng-hong WANG, Wen-jun QU, Hui-ming MENG, Li-min ZHOU, Xing-tao FAN, Xin-wei LI, Hong ZHAO, Hong-li WEN, Peng-cheng SUN. A Review and Perspective on Analytical Methods of Critical Metal Elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. doi: 10.15898/j.cnki.11-2131/td.201907310115
Citation: Chao LI, Deng-hong WANG, Wen-jun QU, Hui-ming MENG, Li-min ZHOU, Xing-tao FAN, Xin-wei LI, Hong ZHAO, Hong-li WEN, Peng-cheng SUN. A Review and Perspective on Analytical Methods of Critical Metal Elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. doi: 10.15898/j.cnki.11-2131/td.201907310115

A Review and Perspective on Analytical Methods of Critical Metal Elements

  • BACKGROUND Strategic critical metal mineral resources including rare, dispersed, rare earth and platinum group elements play an increasingly critical role in emerging industries such as new materials, new energy and information technology. With the deepening of the geological survey of key mineral resources in China, the critical metal elements present new challenges to analytical techniques due to their complex matrix, large differences in different mineral contents, and unstable chemical properties. OBJECTIVES To introduce recent analytical techniques and applications for critical metal elements in different types of geological samples. METHODS Based on different chemical composition, the main matrices of critical metal elements were classified, mainly divided into silicate, carbonate, sulfate, tungstate, phosphate, oxide, sulfide and halide. For different types of rocks and minerals, chemical digestion was largely carried out by traditional dissolution methods such as the acid dissolution method (nitric acid-hydrofluoric acid combination, aqua regia) or alkali fusion methods. RESULTS The characteristics and application of commonly used instruments including electronic probe microanalyzer, inductively coupled plasma-mass spectrometry, inductively coupled plasma-optical emission spectroscopy, and X-ray fluorescence spectroscopy were reviewed. The problems during critical metal analysis including incomplete dissolution, low recovery, oxides and isobaric interference, inconsistency between samples and standard matrices were reviewed and corresponding solutions were proposed. CONCLUSIONS In situ microanalysis with the advantages of high efficiency, low cost, and high spatial resolution, and field on-site geoanalysis with its simple, fast and close to field work features are the main trends in the development of critical metal elements analytical techniques.
  • 加载中
  • [1] 王登红, 王瑞江, 孙艳, 等.我国三稀(稀有稀土稀散)矿产资源调查研究成果综述[J].地球学报, 2016, 37(5):569-580.

    Google Scholar

    Wang D H, Wang R J, Sun Y, et al.A review of achievements in the three-type rare mineral resources (rare resources, rare earth and rarely scattered resources) survey in China[J].Acta Geoscientia Sinica, 2016, 37(5):569-580.

    Google Scholar

    [2] 王登红.关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J].地质学报, 2019, 93(6):1189-1209.

    Google Scholar

    Wang D H.Study on critical mineral resources:Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J].Acta Geologica Sinica, 2019, 93(6):1189-1209.

    Google Scholar

    [3] 毛景文, 杨宗喜, 谢桂青, 等.关键矿产——国际动向与思考[J].矿床地质, 2019, 38(4):689-698.

    Google Scholar

    Mao J W, Yang Z X, Xie G Q, et al.Critical minerals:International trends and thinking[J].Mineral Deposits, 2019, 38(4):689-698.

    Google Scholar

    [4] 翟明国, 吴福元, 胡瑞忠, 等.战略性关键金属矿产资源:现状与问题[J].中国科学基金, 2019, 33(2):106-111.

    Google Scholar

    Zhai M G, Wu F Y, Hu R Z, et al.Critical metal mineral resources:Current research status and scientific issues[J].Bulletin of National Natural Science Foundation of China, 2019, 33(2):106-111.

    Google Scholar

    [5] 蒋少涌, 温汉捷, 许成, 等.关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J].中国科学基金, 2019, 33(2):10-16.

    Google Scholar

    Jiang S Y, Wen H J, Xu C, et al.Earth sphere cycling and enrichment mechanism of critical metals:Major scientific issues for future research[J].Bulletin of National Natural Science Foundation of China, 2019, 33(2):10-16.

    Google Scholar

    [6] 程秀花, 唐南安, 张明祖, 等.稀有分散元素分析方法的研究进展[J].理化检验(化学分册), 2013, 49(6):757-764.

    Google Scholar

    Cheng X H, Tang N A, Zhang M Z, et al.Recent advances of researches on analytical methods for rare and dispersed elements[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2013, 49(6):757-764.

    Google Scholar

    [7] 屈文俊, 王登红, 朱云, 等.稀土稀有稀散元素现代仪器测试全新方法的建立[J].地质学报, 2019, 93(6):1514-1522.

    Google Scholar

    Qu W J, Wang D H, Zhu Y, et al.Establishment of new method for critical elements determination using modern analytical instruments[J].Acta Geologica Sinica, 2019, 93(6):1514-1522.

    Google Scholar

    [8] 皮桥辉, 胡瑞忠, 王登红, 等.广西大厂锡多金属矿田西矿带稀散元素铟的富集规律研究——来自矿石组构和闪锌矿地球化学的证据[J].矿床地质, 2015, 34(2):379-396.

    Google Scholar

    Pi Q H, Hu R Z, Wang D H, et al.Enrichment of indium in west ore belt of Dachang orefield:Evidence from ore textures and sphalerite geochemistry[J].Mineral Deposits, 2015, 34(2):379-396.

    Google Scholar

    [9] Ye L, Cook N J, Ciobanu C L, et al.Trace and minor elements in sphalerite from base metal deposits in South China:A LA-ICPMS study[J].Ore Geology Reviews, 2011, 39(4):188-217. doi: 10.1016/j.oregeorev.2011.03.001

    CrossRef Google Scholar

    [10] 杜安道, 屈文俊, 李超, 等.铼-锇同位素定年方法及分析测试技术的进展[J].岩矿测试, 2009, 28(3):288-304.

    Google Scholar

    Du A D, Qu W J, Li C, et al.A review on the development of Re-Os isotopic dating methods and techniques[J].Rock and Mineral Analysis, 2009, 28(3):288-304.

    Google Scholar

    [11] 王登红, 王瑞江, 李建康, 等.我国三稀矿产资源的基本特征与研究现状[J].矿床地质, 2012, 31(增刊1):41-42.

    Google Scholar

    Wang D H, Wang R J, Li J K, et al.Basic characteristics and research status of the three-type rare mineral resources (rare resources, rare earth and rarely scattered resources) in China[J].Mineral Deposits, 2012, 31(Supplement 1):41-42.

    Google Scholar

    [12] 王成辉, 杨岳清, 王登红, 等.江西九岭地区三稀调查发现磷锂铝石等锂铍锡钽矿物[J].岩矿测试, 2018, 37(1):108-110.

    Google Scholar

    Wang C H, Yang Y Q, Wang D H, et al.Discovery of amblygonite and Li-Be-Sn-Ta minerals in the Jiuling area, Jiangxi Province[J].Rock and Mineral Analysis, 2018, 37(1):108-110.

    Google Scholar

    [13] Zhang S H, Zhao Y, Li Q L, et al.First identification of baddeleyite related/linked to contact metamorphism from carbonatites in the world's largest REE deposit, Bayan Obo in North China Craton[J].Lithos, 2017, 284-285:654-665. doi: 10.1016/j.lithos.2017.05.015

    CrossRef Google Scholar

    [14] 李慧民, 李怀坤, 陈志宏, 等.基性岩斜锆石U-Pb同位素定年3种方法之比较[J].地质通报, 2007, 26(2):128-135.

    Google Scholar

    Li H M, Li H K, Chen Z H, et al.Comparison of three methods for baddeleyite U-Pb isotope dating of basic rocks[J].Geological Bulletin of China, 2007, 26(2):128-135.

    Google Scholar

    [15] 文田耀.电感耦合等离子体质谱法测定重晶石中的微量元素[J].理化检验(化学分册), 2016, 52(6):672-676.

    Google Scholar

    Wen T Y.ICP-MS determination of trace elements in barite[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(6):672-676.

    Google Scholar

    [16] 李艳玲, 熊采华, 方金东, 等.基体分离-电感耦合等离子体质谱测定重晶石中超痕量稀土元素[J].岩矿测试, 2005, 24(2):87-92.

    Google Scholar

    Li Y L, Xiong C H, Fang J D, et al.Determination of ultra-trace rare earth elements in barite by ICP-MS after matrix separation[J].Rock and Mineral Analysis, 2005, 24(2):87-92.

    Google Scholar

    [17] 唐索寒, 李津, 梁细荣, 等.钕同位素比值143Nd/144Nd标准溶液研制[J].岩矿测试, 2017, 36(2):163-170.

    Google Scholar

    Tang S H, Li J, Liang X R, et al.Reference material preparation of 143Nd/144Nd isotope ratio[J].Rock and Mineral Analysis, 2017, 36(2):163-170.

    Google Scholar

    [18] 王祎亚, 邓赛文, 王毅民, 等.磷矿石分析方法评述[J].冶金分析, 2013, 33(4):26-34.

    Google Scholar

    Wang Y Y, Deng S W, Wang Y M, et al.Review on analytical methods of phosphate ores[J].Metallurgical Analysis, 2013, 33(4):26-34.

    Google Scholar

    [19] 王蕾, 张保科, 马生凤, 等.封闭压力酸溶-电感耦合等离子体光谱法测定钨矿石中的钨[J].岩矿测试, 2014, 33(5):661-664.

    Google Scholar

    Wang L, Zhang B K, Ma S F, et al.Determination of wolfram in tungsten ore by pressurized acid digestion-inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2014, 33(5):661-664.

    Google Scholar

    [20] 喻祥芬, 张德琼, 杨启顺.锡石中铌钽赋存形式的研究[J].地球化学, 1976(1):73-76.

    Google Scholar

    Yu X F, Zhang D Q, Yang Q S.A study on the mode of occurrence of niobium and tantalum beared in cassiterite[J].Geochimica, 1976(1):73-76.

    Google Scholar

    [21] 文加波.电感耦合等离子体发射光谱法测定铝土矿中镓——酸溶和碱熔预处理方法比较[J].岩矿测试, 2011, 30(4):481-485.

    Google Scholar

    Wen J B.Quantification of gallium in bauxites by inductively coupled plasma-atomic emission spectrometry-Comparison of sample pretreatment methods between alkali fusion and aciddissolution[J].Rock and Mineral Analysis, 2011, 30(4):481-485.

    Google Scholar

    [22] Norman M, Robinson P, Clark D.Major- and trace-element analyses of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF:New data on international reference materials[J].The Canadian Mineralogist, 2003, 41:293-305. doi: 10.2113/gscanmin.41.2.293

    CrossRef Google Scholar

    [23] 杨雪, 李超, 李欣尉, 等.半封闭硝酸溶解体系ICP-MS快速测定辉钼矿的Re-Os年龄及Re含量[J].岩矿测试, 2016, 35(1):24-31.

    Google Scholar

    Yang X, Li C, Li X W, et al.A rapid method to determine the Re-Os age and Re content of molybdenite by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2016, 35(1):24-31.

    Google Scholar

    [24] 代小吕, 董利明, 赵欣, 等.沉淀分离-电感耦合等离子体质谱法测定方铅矿中铊[J].分析试验室, 2016, 35(3):263-265.

    Google Scholar

    Dai X L, Dong L M, Zhao X, et al.Determination of thallium in galena by precipitation separation combined with inductively coupled plasma mass spectrometry[J].Chinese Journal of Analysis Laboratory, 2016, 35(3):263-265.

    Google Scholar

    [25] 朱健, 马程程, 赵磊, 等.高压密闭消解-电感耦合等离子体质谱法测定煤中17种金属元素[J].理化检验(化学分册), 2014, 50(8):960-963.

    Google Scholar

    Zhu J, Ma C C, Zhao L, et al.ICP-MS determination of 17 metal elements in coal with high-pressure closed digestion[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2014, 50(8):960-963.

    Google Scholar

    [26] 宋伟娇, 代世峰, 赵蕾, 等.微波消解-电感耦合等离子体质谱法测定煤中的硼[J].岩矿测试, 2014, 33(3):327-331.

    Google Scholar

    Song W J, Dai S F, Zhao L, et al.Determination of boron in coal samples with microwave digestion by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(3):327-331.

    Google Scholar

    [27] Müller A, René M, Behr H J, et al.Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovsky Les Mts.Czech Republic)[J].Mineralogy & Petrology, 2003, 79(3-4):167-191.

    Google Scholar

    [28] Batanova V, Sobolev A V, Kuzmin D V.Trace element analysis of olivine:High precision analytical method for JEOL JXA-8230 electron probe microanalyser[J].Chemical Geology, 2015, 419:149-157. doi: 10.1016/j.chemgeo.2015.10.042

    CrossRef Google Scholar

    [29] 许涛, 崔爱端, 杜梅, 等.电感耦合等离子体发射光谱法测定稀土铌钽矿中稀土元素和钍量[J].岩矿测试, 2009, 28(6):549-552.

    Google Scholar

    Xu T, Cui A D, Du M, et al.Determination of rare earth elements and thorium in Re-Nb-Ta ores by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2009, 28(6):549-552.

    Google Scholar

    [30] 刘贵磊, 许俊玉, 温宏利, 等.动态反应池-电感耦合等离子体质谱法精确测定配分差异显著的重稀土元素[J].桂林理工大学学报, 2016, 36(1):176-183.

    Google Scholar

    Liu G L, Xu J Y, Wen H L, et al.Determination of heavy rare earth elements of special rare earth ores by inductively coupled plasma mass spectrometry with a dynamic reaction cell[J].Journal of Guilin University of Technology, 2016, 36(1):176-183.

    Google Scholar

    [31] 吴石头, 王亚平, 孙德忠, 等.电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素——四种前处理方法的比较[J].岩矿测试, 2014, 33(1):12-19.

    Google Scholar

    Wu S T, Wang Y P, Sun D Z, et al.Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry:A comparison of four different pretreatment methods[J].Rock and Mineral Analysis, 2014, 33(1):12-19.

    Google Scholar

    [32] 李冰, 杨红霞.电感耦合等离子体质谱技术最新进展[J].分析试验室, 2003, 22(1):94-100.

    Google Scholar

    Li B, Yang H X.Recent advances in inductively coupled plasma mass spectrometry[J].Chinese Journal of Analysis Laboratory, 2003, 22(1):94-100.

    Google Scholar

    [33] 刘勇胜, 胡兆初, 李明, 等.LA-ICP-MS在地质样品元素分析中的应用[J].科学通报, 2013, 58(36):3753-3769.

    Google Scholar

    Liu Y S, Hu Z C, Li M, et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58(32):3863-3878.

    Google Scholar

    [34] Zhang W, Zhao C H, Liu Y S, et al.Reassessment of HF/HNO3 decomposition capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS[J].Geostandards and Geoanalytical Research, 2012, 36(3):271-289. doi: 10.1111/j.1751-908X.2012.0156.x

    CrossRef Google Scholar

    [35] 张保科, 许俊玉, 王蕾, 等.锂辉石样品中稀有稀散稀土等多元素的测定方法[J].桂林理工大学学报, 2016, 36(1):184-190.

    Google Scholar

    Zhang B K, Xu J Y, Wang L, et al.Multi-elements simultaneous determination methods for rare, scattered and rare earth elements in spodumene samples[J].Journal of Guilin University of Technology, 2016, 36(1):184-190.

    Google Scholar

    [36] 马圣钞, 王登红, 刘善宝, 等.川西可尔因锂矿田云母矿物化学及稀有金属成矿和找矿指示[J].矿床地质, 2019, 38(4):877-897.

    Google Scholar

    Ma S C, Wang D H, Liu S B, et al.Mineral chemistry of micas from Ke'eryin pegmatite type lithium orefield in western Sichuan and its indication for rare metal mineralization and prospecting[J].Mineral Deposits, 2019, 38(4):877-897.

    Google Scholar

    [37] 侯江龙, 李建康, 王登红, 等.四川甲基卡锂矿床花岗岩体中云母类矿物的元素组成对矿区成矿条件的指示[J].地球科学, 2018, 43(增刊2):123-138.

    Google Scholar

    Hou J L, Li J K, Wang D H, et al.The composition and metallogenic significance of micas from Jiajika two-mica granite, Sichuan Province[J].Earth Science, 2018, 43(Supplement 2):123-138.

    Google Scholar

    [38] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [39] 蔺洁, 刘勇胜, 胡兆初, 等.MC-ICP-MS准确测定地质样品中锂同位素组成[J].矿物岩石地球化学通报, 2016, 35(3):458-464.

    Google Scholar

    Lin J, Liu Y S, Hu Z C, et al.Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3):458-464.

    Google Scholar

    [40] Sun H, Xiao Y, Gao Y, et al.Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary[J].Proceedings of the National Academy of Sciences, 2018, 115(15):3782-3787. doi: 10.1073/pnas.1711862115

    CrossRef Google Scholar

    [41] Li C, Zhou L M, Zhao Z, et al.In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS[J].Journal of Asian Earth Sciences, 2018, 160:38-47. doi: 10.1016/j.jseaes.2018.03.025

    CrossRef Google Scholar

    [42] Zhou L M, Wang R, Hou Z Q, et al.Hot Paleocene-Eocene Gangdese arc:Growth of continental crust in southern Tibet[J].Gondwana Research, 2018, 62:178-197. doi: 10.1016/j.gr.2017.12.011

    CrossRef Google Scholar

    [43] 赵悦, 侯可军, 田世洪, 等.常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究[J].岩矿测试, 2015, 34(1):28-39.

    Google Scholar

    Zhao Y, Hou K J, Tian S H, et al.Study on measurements of lithium isotopic compositions for common standard reference materials using multi-collector inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(1):28-39.

    Google Scholar

    [44] Lin J, Liu Y, Tong X, et al.Improved in situ Li isotopic ratio analysis of silicates by optimizing signal intensity, isotopic ratio stability and intensity matching using ns-LA-MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2017, 32(4):834-842. doi: 10.1039/C6JA00409A

    CrossRef Google Scholar

    [45] Wiedenbeck M, Rosner M, Halama R, et al.Tourmaline reference materials for the in situ determination of lithium isotope composition[J].Geochmica et Cosmochimica Acta, 2009, 73(13):40-62.

    Google Scholar

    [46] Gao Y Y, Li X H, Griffin W L, et al.Extreme lithium isotopic fractionation in three zircon standards (Plešovice, Qinghu and Temora)[J].Scientific Reports, 2015, 5(1):16878. doi: 10.1038/srep16878

    CrossRef Google Scholar

    [47] Su B X, Gu X Y, Deloule E, et al.Potential orthopy-roxene, clinopyroxene and olivine reference materials for in situ lithium isotope determination[J].Geostandards and Geoanalytical Research, 2015, 39(3):357-369. doi: 10.1111/j.1751-908X.2014.00313.x

    CrossRef Google Scholar

    [48] 苏本勋.锂同位素在地幔地球化学中的应用[J].矿物岩石地球化学通报, 2017, 36(1):6-13.

    Google Scholar

    Su B X.Applications of Li isotopes in mantle geo-chemistry[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(1):6-13.

    Google Scholar

    [49] 张欣, 许俊玉, 范凡, 等.断续流动氢化物发生-原子吸收光谱法测定地质样品中的硒[J].桂林理工大学学报, 2016, 36(1):191-194.

    Google Scholar

    Zhang X, Xu J Y, Fan F, et al.Determination of selenium in geological samples by intermittent-flow hydride generation atomic absorption spectrometry[J].Journal of Guilin University of Technology, 2016, 36(1):191-194.

    Google Scholar

    [50] 尹明.我国地质分析测试技术发展现状及趋势[J].岩矿测试, 2009, 28(1):37-52.

    Google Scholar

    Yin M.Progress and prospect on geoanalytical techniques in China[J].Rock and Mineral Analysis, 2009, 28(1):37-52.

    Google Scholar

    [51] 樊兴涛, 温宏利, 屈文俊, 等.一种快速分析离子吸附型稀土元素的方法[P].[2016-05-04].

    Google Scholar

    Fan X T, Wen H L, Qu W J, et al.A rapid method for the analysis of ion adsorbed rare earth elements[P].[2016-05-04].

    Google Scholar

    [52] 焦距, 杨啸涛, 袁继海, 等.便携式Li-K分析仪的研制及其在锂辉石中锂的分析应用[J].岩矿测试, 2016, 35(4):366-372.

    Google Scholar

    Jiao J, Yang X T, Yuan J H, et al.Development of a portable Li-K analyzer and its application in the determination of lithium in spodumene[J].Rock and Mineral Analysis, 2016, 35(4):366-372.

    Google Scholar

    [53] Meisel T, Fellner N, Moser J.A simple procedure for the determination of platinum group elements and rhenium (Ru, Rh, Pd, Re, Os, Ir and Pt) using ID-ICP-MS with an inexpensive on-line matrix separation in geological and environmental materials[J].Journal of Analytical Atomic Spectrometry, 2003, 18:720-726. doi: 10.1039/b301754k

    CrossRef Google Scholar

    [54] 李刚, 姚玉玲, 李婧祎, 等.铌钽元素分析技术新进展[J].岩矿测试, 2018, 37(1):1-14.

    Google Scholar

    Li G, Yao Y L, Li J Y, et al.Progress of niobium and tantalum analytical technology[J].Rock and Mineral Analysis, 2018, 37(1):1-14.

    Google Scholar

    [55] Yuan H, Hu S, Tong J, et al.Preparation of ultra-pure water and acids and investigation of background of an ICP-MS laboratory[J].Talanta, 2000, 52(6):971-981. doi: 10.1016/S0039-9140(00)00439-2

    CrossRef Google Scholar

    [56] 孙卫东, 李聪颖.元素的地球化学性质与关键金属成矿:前言[J].岩石学报, 2020, 36(1):1-4.

    Google Scholar

    Sun W D, Li C Y.The geochemical behavior and mineralization of critical metals:Preface[J].Acta Petrologica Sinica, 2020, 36(1):1-4.

    Google Scholar

    [57] 温汉捷, 周正兵, 朱传威, 等.稀散金属超常富集的主要科学问题[J].岩石学报, 2019, 35(11):3271-3291.

    Google Scholar

    Wen H J, Zhou Z B, Zhu C W, et al.Critical scientific issues of super-enrichment of dispersed metals[J].Acta Petrologica Sinica, 2019, 35(11):3271-3291.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(2)

Article Metrics

Article views(4408) PDF downloads(308) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint