Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 1
Article Contents

ZHAO Qing-ling, LI Qing-cai, TAN Xian-feng, AN Mao-guo, CHEN Juan, MAO Xiu-li. Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2021, 40(1): 103-110. doi: 10.15898/j.cnki.11-2131/td.201907290114
Citation: ZHAO Qing-ling, LI Qing-cai, TAN Xian-feng, AN Mao-guo, CHEN Juan, MAO Xiu-li. Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2021, 40(1): 103-110. doi: 10.15898/j.cnki.11-2131/td.201907290114

Determination of Hexavalent Chromium in Solid Waste by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion

More Information
  • BACKGROUND

    Hexavalent chromium is one of the necessary indices for monitoring the soil environment of solid waste and construction land.

    OBJECTIVES

    To establish a simple, accurate and precise method for the determination of Cr(Ⅵ).

    METHODS

    Using 0.1mol/L disodium hydrogen phosphate solution (pH=9.0) as the extractant, the sample was treated by microwave digestion at the optimized temperature and time, ensuring the destruction of the solid sample matrix. All Cr(Ⅵ) in the lattice was dissolved into the solution, and oxidation of Cr(Ⅲ) was effectively inhibited. The hexavalent chromium (solution) and trivalent chromium (precipitation) was separated by 0.45μm filter membrane at pH=9.0. Cr(Ⅵ) in the sample solution, and the content of Cr(Ⅵ) was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES).

    RESULTS

    When the sample quantity was 1.00g, the microwave digestion temperature was 90℃, and the digestion time was 20min, the complete extraction and accurate determination of Cr(Ⅵ) in solid waste was guaranteed. The detection limit was 0.057mg/kg, the relative standard deviation (n=7) was lower than 3.20%, compared with HJ 687 standard method, the relative deviation is -5.6%-7.6%, and the recoveries of Cr(Ⅵ) in solid waste were 94.3% and 96.6%. Compared with the previous ICP-OES method with the detection limit of 0.83mg/kg and recovery of 87.2%, the detection limit of this method was lower by 10 times.

    CONCLUSIONS

    The proposed method has a lower detection limit, short sample pretreatment time, and high degree of automation and can be widely used in the field of environment monitoring.

  • 加载中
  • [1] Tran H N, Nguyen D T, Le G T, et al. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review[J]. Journal of Hazardous Materials, 2019, 373: 258-270. doi: 10.1016/j.jhazmat.2019.03.018

    CrossRef Google Scholar

    [2] Zhao P D, Zhang H, Yu J, et al. Conditions for mutual conversion of Cr(Ⅲ) and Cr(Ⅵ) in aluminum chromium slag[J]. Journal of Alloys and Compounds, 2019, 788: 506-513. doi: 10.1016/j.jallcom.2019.02.093

    CrossRef Google Scholar

    [3] Dhal B, Thatoi H N, Das N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review[J]. Journal of Hazardous Materials, 2013, 250-251: 272-291. doi: 10.1016/j.jhazmat.2013.01.048

    CrossRef Google Scholar

    [4] 陈丽琼, 霍巨垣, 王欣, 等. 六价铬测定方法研究进展[J]. 理化检验(化学分册), 2015, 51(8): 1208-1212.

    Google Scholar

    Chen L Q, Huo J Y, Wang X, et al. Recent advances of researches on determination of hexavalent chromium[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(8): 1208-1212.

    Google Scholar

    [5] Cao X Y, Wang S, Bi R C, et al. Toxic effects of Cr(Ⅵ) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage[J]. Chemosphere, 2019, 222: 355-363. doi: 10.1016/j.chemosphere.2019.01.137

    CrossRef Google Scholar

    [6] Rager J E, Mina S M, Chappell G A, et al. Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis[J]. Toxicology Letters, 2019, 305: 40-50. doi: 10.1016/j.toxlet.2019.01.011

    CrossRef Google Scholar

    [7] Zhao Y, Yan J, Li A P, et al. Bone marrow mesenchymal stem cells could reduce the toxic effects of hexavalent chromium on the liver by decreasing endoplasmic reticulum stress-mediated apoptosis via SIRT1/HIF-1α signaling pathway in rats[J]. Toxicology Letters, 2019, 310: 31-38. doi: 10.1016/j.toxlet.2019.04.007

    CrossRef Google Scholar

    [8] Yin F, Yan J, Zhao Y, et al. Bone marrow mesenchymal stem cells repair Cr(Ⅵ)-injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway[J]. Ecotoxicology and Environmental Safety, 2019, 176: 234-241. doi: 10.1016/j.ecoenv.2019.03.093

    CrossRef Google Scholar

    [9] des Marias T L, Costa M. Mechanisms of chromium-induced toxicity[J]. Current Opinion in Toxicology, 2019, 14: 1-7. doi: 10.1016/j.cotox.2019.05.003

    CrossRef Google Scholar

    [10] Chen Q Y, Murphy A, Sun H, et al. Molecular and epigenetic mechanisms of Cr(Ⅵ)-induced carcinogenesis[J]. Toxicology and Applied Pharmacology, 2019, 377: 114636. doi: 10.1016/j.taap.2019.114636

    CrossRef Google Scholar

    [11] Santonen T, Alimonti A, Bocca B, et al. Setting up a collaborative European human biological monitoring study on occupational exposure to hexavalent chromium[J]. Environmental Research, 2019, 177: 108583. doi: 10.1016/j.envres.2019.108583

    CrossRef Google Scholar

    [12] 张杰芳, 闫玉乐, 夏承莉, 等. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J]. 岩矿测试, 2017, 36(1): 46-51.

    Google Scholar

    Zhang J F, Yan Y L, Xia C L, et al. Determination of Cr(Ⅵ) in coal ashby microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(1): 46-51.

    Google Scholar

    [13] 张涛, 蔡五田, 刘金巍, 等. 超声辅助提取离子色谱法测定铬污染土壤中的六价铬[J]. 分析测试学报, 2013, 32(11): 1384-1387.

    Google Scholar

    Zhang T, Cai W T, Liu J W, et al. Determination of hexavalent chromium in soil samples by ultrasound-assisted extraction ion chromatography[J]. Journal of Instrumental Analysis, 2013, 32(11): 1384-1387.

    Google Scholar

    [14] Miyake Y, Tokumura M, Iwazaki Y, et al. Determination of hexavalent chromium concentration in industrial waste incinerator stack gas by using a modified ion chromatography with post-column derivatization method[J]. Journal of Chromatography A, 2017, 1502: 24-29. doi: 10.1016/j.chroma.2017.04.046

    CrossRef Google Scholar

    [15] 巢静波, 史乃捷, 陈扬, 等. 衍生液注入控制-离子色谱法同时测定环境水样中的三价铬和六价铬[J]. 环境化学, 2016, 35(1): 67-74.

    Google Scholar

    Chao J B, Shi N J, Chen Y, et al. Simultaneous determination of trivalent and hexavalent chromium in environmental waters by ion chromatography with derivatization reagent injection-control technique[J]. Environmental Chemistry, 2016, 35(1): 67-74.

    Google Scholar

    [16] 虞锐鹏, 胡忠阳, 叶明立, 等. 快速溶剂萃取-离子色谱法同时测定塑料中的三价铬和六价铬[J]. 色谱, 2012, 30(4): 409-413.

    Google Scholar

    Yu R P, Hu Z Y, Ye M L, et al. Simultaneous determination of trivalent chromium and hexavalent chromium in plastics by accelerated solvent extraction-ion chromatography[J]. Chinese Journal of Chromatography, 2012, 30(4): 409-413.

    Google Scholar

    [17] Olonkwoh S S, Bakar N K A. A simple method for chromium speciation analysis in contaminated water using APDC and a pre-heated glass tube followed by HPLC-PDA[J]. Talanta, 2018, 181: 401-409. doi: 10.1016/j.talanta.2018.01.041

    CrossRef Google Scholar

    [18] 田勇, 刘崇华, 方晗, 等. 共沉淀法辅助分离-离子色谱与电感耦合等离子体质谱联用测定玩具材料中三价铬及超痕量六价铬[J]. 分析测试学报, 2015, 34(6): 706-710.

    Google Scholar

    Tian Y, Liu C H, Fang H, et al. Determination of Cr(Ⅲ) and ultratrace Cr(Ⅵ) in toy materials by co-precipitation assisted separation-ion chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2015, 34(6): 706-710.

    Google Scholar

    [19] 刀谞, 吕怡兵, 滕恩江, 等. 离子色谱-电感耦合等离子体质谱联用测定大气颗粒物PM2.5和PM10中的六价铬[J]. 色谱, 2014, 32(9): 936-941.

    Google Scholar

    Dao X, Lv Y B, Teng E J, et al. Determination of hexavalent chromium in atmospheric particles PM2.5 and PM10 by ion chromatography with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(9): 936-941.

    Google Scholar

    [20] 倪张林, 汤富彬, 屈明华, 等. 微波灰化-液相色谱-电感耦合等离子体质谱联用测定干食用菌中的三价铬和六价铬[J]. 色谱, 2014, 32(2): 174-178.

    Google Scholar

    Ni Z L, Tang F B, Qu M H, et al. Determination of trivalent chromium and hexavalent chromium in dried edible fungi by microwave ashing-liquid chromatography with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(2): 174-178.

    Google Scholar

    [21] Gao L, Gao B, Xu D Y, et al. In-situ measurement of labile Cr(Ⅲ) and Cr(Ⅵ) in water using diffusive gradients in thin-films (DGT)[J]. Science of the Total Environment, 2019, 653: 1161-1167. doi: 10.1016/j.scitotenv.2018.10.392

    CrossRef Google Scholar

    [22] Catalani S, Fostinelli J, Gilberti M E, et al. Application of a metal free high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the determination of chromium species in drinking and tap water[J]. International Journal of Mass Spectrometry, 2015, 387: 31-37. doi: 10.1016/j.ijms.2015.06.015

    CrossRef Google Scholar

    [23] Heitland P, Blohm M, Breuer C, et al. Application of ICP-MS and HPLC-ICP-MS for diagnosis and therapy of a severe intoxication with hexavalent chromium and inorganic arsenic[J]. Journal of Trace Elements in Medicine and Biology, 2017, 41: 36-40. doi: 10.1016/j.jtemb.2017.02.008

    CrossRef Google Scholar

    [24] Drinčić A, Zuliani T, Šančar J, et al. Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry[J]. Science of the Total Environment, 2018, 637-638: 1286-1294. doi: 10.1016/j.scitotenv.2018.05.112

    CrossRef Google Scholar

    [25] Lu Y, Li G, Liu W, et al. The application of micro-wave digestion in decomposing some refractory ore samples with solid fusion agent[J]. Talanta, 2018, 186: 538-544. doi: 10.1016/j.talanta.2018.03.074

    CrossRef Google Scholar

    [26] Muller E I, Muller C C, Souza J P, et al. Green microwave-assisted wet digestion method of carbohydrate-rich foods with hydrogen peroxide using single reaction chamber and further elemental determination using ICP-OES and ICP-MS[J]. Microchemical Journal, 2017, 134: 257-261. doi: 10.1016/j.microc.2017.06.012

    CrossRef Google Scholar

    [27] 赵庆令, 安茂国, 陈洪年, 等. 济南市某废弃化工厂区域土壤地球化学特征研究[J]. 岩矿测试, 2018, 37(2): 201-208.

    Google Scholar

    Zhao Q L, An M G, Chen H N, et al. Research on geochemical characteristic of soil in a chemical industrial factory site in Jinan City[J]. Rock and Mineral Analysis, 2018, 37(2): 201-208.

    Google Scholar

    [28] 安茂国, 赵庆令, 谭现锋, 等. 化学还原-稳定化联合修复铬污染场地土壤的效果研究[J]. 岩矿测试, 2019, 38(2): 204-211.

    Google Scholar

    An M G, Zhao Q L, Tan X F, et al. Research on the effect of chemical reduction-stabilization combined remediation of Cr-contaminated soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1845) PDF downloads(69) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint