Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 6
Article Contents

Yan ZHANG. Study on the Separation of Sericite for 40Ar/39Ar Dating[J]. Rock and Mineral Analysis, 2019, 38(6): 599-608. doi: 10.15898/j.cnki.11-2131/td.201904010042
Citation: Yan ZHANG. Study on the Separation of Sericite for 40Ar/39Ar Dating[J]. Rock and Mineral Analysis, 2019, 38(6): 599-608. doi: 10.15898/j.cnki.11-2131/td.201904010042

Study on the Separation of Sericite for 40Ar/39Ar Dating

  • BACKGROUND The 40Ar/39Ar dating of sericites is a very important method for constraining the age of deposits, but the purity of sericite remains a problem. The sericite aggregate acquired by the available separation and purification method commonly contains microline. For example, the content of microline obtained by the conventional magnet-heavy liquid method in this study is 0-28%, whereas the content of microline obtained by the conventional suspension method is 3%-45%. When the content of microline in the sericite aggregate exceeds 10%, it will directly affect the accuracy of dating. OBJECTIVES To find a useful method to increase the content of sericite and decrease the content of microline while the grain size is not too fine to cause 39Ar recoil loss during the irradiation. METHODS The purification effects of conventional magnetic separation-heavy liquid method and conventional suspension method are firstly investigated. The experimental results show that the purity of sericites obtained by the two methods are low, and the particle size of the conventional suspension method is irregular and cannot meet the requirements of dating. The ultrasonic disaggregation-suspension method was used to carry out conditional experiments on the microline-bearing sericite aggregates obtained by the magnetic separation-heavy liquid method. RESULTS Using the ultrasonic disaggregation-suspension method, the content of sericite increased sharply while the content of microline decreased greatly. For example, the content of sericite for one experiment increased from 28% to 77% and the content of microline relative to sericite decreased from 12.5% to 0. The fraction of the grain size < 1μm was above 95% and the smallest grain size was >0.356μm which was larger than 0.08μm estimated for the 39Ar recoil distance. Such grain size cannot obviously cause 39Ar recoil loss and did not have obvious effects on the age of middle to high temperature steps. CONCLUSIONS When the content of microline relative to sericite in the sericite-bearing aggregates concentrated by magnet-heavy liquid method is more than 10%, the ultrasonic disaggregation-suspension method can be used to further increase the content of sericite and decrease the content of microline to improve the accuracy of 40Ar/39Ar dating.
  • 加载中
  • [1] 高允, 孙艳, 赵芝, 等.内蒙古武川县赵井沟铌钽多金属矿床白云母40Ar-39Ar同位素年龄及地质意义[J].岩矿测试, 2017, 36(5):551-558.

    Google Scholar

    Gao Y, Sun Y, Zhao Z, et al.40Ar-39Ar dating of muscovite from the Zhaojinggou Nb-Ta polymetallic depositin Wuchuan county of Inner Mongolia and its geological implications[J].Rock and Mineral Analysis, 2017, 36(5):551-558.

    Google Scholar

    [2] 刘国仁, 李彦, 王蕊, 等.新疆额尔齐斯构造带哲兰德金矿白云母40Ar/39Ar同位素年龄及地质意义[J].岩矿测试, 2018, 37(6):705-712.

    Google Scholar

    Liu G R, Li Y, Wang R, et al.40Ar/39Ar dating of muscovite from the Zhelande Au deposit, Irtysh tectonic zone, Xinjiang and its geological implications[J].Rock and Mineral Analysis, 2018, 37(6):705-712.

    Google Scholar

    [3] 侯淋, 唐菊兴, 林彬, 等.西藏东窝东矿床矿化蚀变过程元素迁移及绢云母40Ar-39Ar年代学及其地质意义[J].岩矿测试, 2017, 36(4):440-449.

    Google Scholar

    Hou L, Tang J X, Lin B, et al.Element migration during alteration and 40Ar/39Ar dating of sericite from the Dongwodong deposit, Tibet and its geological significance[J].Rock and Mineral Analysis, 2017, 36(4):440-449.

    Google Scholar

    [4] 高建京, 毛景文, 陈懋弘, 等.豫西铁炉坪银铅矿床矿脉构造解析及近矿蚀变岩绢云母40Ar-39Ar年龄测定[J].地质学报, 2011, 85(7):1172-1187.

    Google Scholar

    Gao J J, Mao J W, Chen M H, et al.Vein structure analysis and 40Ar/39Ar dating of sericite from sub-ore altered rocks in the Tieluping large-size Ag-Pb deposit of Western Henan Province[J].Acta Geologica Sinica, 2011, 85(7):1172-1187.

    Google Scholar

    [5] 高永伟, 张振亮, 王志华, 等.西天山卡特巴阿苏金矿床成矿年代学及其地质意义——来自绢云母40 Ar-39 Ar同位素年龄证据[J].地质与勘探, 2015, 51(5):805-815.

    Google Scholar

    Gao Y W, Zhang Z L, Wang Z H, et al.Geochronology of the Katabaasu gold deposit in west tian shan and its geological significance:Evidence from 40Ar-39Ar isotopic ages of sericite[J].Geology and Exploration, 2015, 51(5):805-815.

    Google Scholar

    [6] 胡芳芳, 范宏瑞, 杨进辉, 等.胶东乳山金矿蚀变岩中绢云母40Ar/39Ar年龄及其对金成矿事件的制约[J].矿物岩石地球化学通报, 2006, 25(2):109-114. doi: 10.3969/j.issn.1007-2802.2006.02.001

    CrossRef Google Scholar

    Hu F F, Fan H R, Yang J H, et al.The 40Ar/39Ar dating age of sericite from altered rocks in the Rushan gold deposit, Jiaodong Peninsula and its constraints on the gold mineralization[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(2):109-114. doi: 10.3969/j.issn.1007-2802.2006.02.001

    CrossRef Google Scholar

    [7] 纪现华, 孟祥金, 杨竹森, 等.西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义[J].地质与勘探, 2014, 50(2):281-290.

    Google Scholar

    Ji X H, Meng X J, Yang Z S, et al.The Ar-Ar geochronology of sericite from the cryptoexplosive breccia type Pb-Zn deposit in Narusongduo, Tibet and its geological significance[J].Geology and Exploration, 2014, 50(2):281-290.

    Google Scholar

    [8] 李金超, 孔会磊, 栗亚芝, 等.青海东昆仑瑙木浑金矿蚀变绢云母Ar-Ar年龄、石英闪长岩锆石U-Pb年龄和岩石地球化学特征[J].地质学报, 2017, 9(5):979-994. doi: 10.3969/j.issn.0001-5717.2017.05.002

    CrossRef Google Scholar

    Li J C, Kong H L, Li Y Z, et al.Ar-Ar age of altered sericite, zircon U-Pb age of quartz diorite and geochemistry of the Naomuhun gold deposit, East Kunlun[J].Acta Geologica Sinica, 2017, 9(5):979-994. doi: 10.3969/j.issn.0001-5717.2017.05.002

    CrossRef Google Scholar

    [9] 刘协鲁, 王义天, 胡乔青.陕西凤太矿集区柴蚂金矿床成矿时代的40Ar-39Ar年龄证据[J].矿床地质, 2018, 37(1):163-174.

    Google Scholar

    Liu X L, Wang Y T, Hu Q Q.Evidence of 40Ar/39Ar age data for ore-forming time of Chaima gold deposit in Fengtai ore concentration area, Shaanxi Province[J].Mineral Deposits, 2018, 37(1):163-174.

    Google Scholar

    [10] 梁维, 杨竹森, 郑远川.藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义[J].地质学报, 2015, 89(3):560-568.

    Google Scholar

    Liang W, Yang Z S, Zheng Y C.The Zhaxikang Pb-Zn polymetallic deposit:Ar-Ar age of sericite and its metallogenic significance[J].Acta Geologica Sinica, 2015, 89(3):560-568.

    Google Scholar

    [11] 袁霞, 陈文, 张斌, 等.西天山望峰金矿床绢云母40Ar/39Ar年龄及矿床成因研究[J].矿床地质, 2017, 36(1):57-67.

    Google Scholar

    Yuan X, Chen W, Zhang B, et al.40Ar/39Ar age of sericite and genetic study of Wangfeng gold deposite, West Tianshan Mountains[J].Mineral Deposits, 2017, 36(1):57-67.

    Google Scholar

    [12] 张万益, 聂凤军, 刘妍, 等.内蒙古奥尤特铜-锌矿床绢云母40Ar-39Ar同位素年龄及地质意义[J].地球学报, 2008, 9(5):592-598. doi: 10.3321/j.issn:1006-3021.2008.05.008

    CrossRef Google Scholar

    Zhang W Y, Nie F J, Liu Y, et al.40Ar-39Ar geochro-nology of the Aoyoute Cu-Zn deposit in Inner Mongolia and its significance[J].Acta Geoscientica Sinica, 2008, 9(5):592-598. doi: 10.3321/j.issn:1006-3021.2008.05.008

    CrossRef Google Scholar

    [13] 祝向平, 陈华安, 马东方, 等.西藏波龙斑岩铜金矿床钾长石和绢云母40Ar/39Ar年龄及其地质意义[J].矿床地质, 2013, 32(5):954-962. doi: 10.3969/j.issn.0258-7106.2013.05.007

    CrossRef Google Scholar

    Zhu X P, Chen H A, Ma D F, et al.40Ar/39Ar dating of hydrothermal K-feldspar and hydrothermal sericite from Bolong porphyry Cu-Au deposit in Tibet[J].Mineral Deposits, 2013, 32(5):954-962. doi: 10.3969/j.issn.0258-7106.2013.05.007

    CrossRef Google Scholar

    [14] Brhlke J K, Irwin J J.Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions:Analyses of microstandards and synthetic inclusions in quartz[J].Geochimica et Cosmochimica Acta, 1992, 56(1):187-201. doi: 10.1016/0016-7037(92)90126-4

    CrossRef Google Scholar

    [15] Dong H, Hall C M, Peacor D R, et al.Mechanisms of argon retention in clays revealed by laser 40Ar-39Ar dating[J].Science, 1995, 267(5196):355-359. doi: 10.1126/science.267.5196.355

    CrossRef Google Scholar

    [16] Dong H, Hall C M, Halliday A N, et al.40Ar/39Ar illite dating of Late Caledonian (Acadian) metamorphism and cooling of K-bentonites and slates from the Welsh Basin, U.K[J].Earth and Planetary Science Letters, 1997, 150(3-4):337-351. doi: 10.1016/S0012-821X(97)00100-3

    CrossRef Google Scholar

    [17] Dong H L, Hall C M, Halliday A N, et al.Laser 40Ar-39Ar dating of microgra-size illite samples and implication for thin section dating[J].Geochimica et Cosmochimica Acta, 1997, 61(18):3803-3808. doi: 10.1016/S0016-7037(97)00286-X

    CrossRef Google Scholar

    [18] Fred J, Jennifer P M, Paul R R.39Ar and 37Ar recoil loss during neutron irradiation of sanidine and plagioclase[J].Geochimica et Cosmochimica Acta, 2007, 71(11):2791-2808. doi: 10.1016/j.gca.2007.03.017

    CrossRef Google Scholar

    [19] Foland K A, Linder J S, Laskowski T E, et al.40Ar-39Ar dating of glauconies:Measured 39Ar recoil loss from well-crystallized specimens[J].Chemical Geology, 1984, 46(3):241-264.

    Google Scholar

    [20] Foland K A, Hubacher F A, Arehart G B.40Ar/39Ar dating of very fine-grained samples:An encapsulated-vial procedure to overcome the problem of 39Ar recoil loss[J].Chemical Geology, 1992, 102(1-4):269-276. doi: 10.1016/0009-2541(92)90161-W

    CrossRef Google Scholar

    [21] Halliday A N.40Ar-39Ar stepheating studies of clay concentrates from Irish orebodies[J].Geochimica et Cosmochimica Acta, 1978, 42(12):1851-1858. doi: 10.1016/0016-7037(78)90240-5

    CrossRef Google Scholar

    [22] Harrison T M, Fitz J D.Exsolution in hornblende and its consequences for 40Ar/39Ar age spectra and closure temperature[J].Geochimica et Cosmochimica Acta, 1986, 50(2):247-253. doi: 10.1016/0016-7037(86)90173-0

    CrossRef Google Scholar

    [23] Hess J C, Lippolt H J.Kinetics of Ar isotopes during neutron irradiation-39Ar loss from minerals as a source of error in 40Ar/39Ar dating[J].Chemical Geology, 1986, 59:223-236. doi: 10.1016/0168-9622(86)90073-4

    CrossRef Google Scholar

    [24] Jeffrey H P, Se'bastien N, Paul R R.Quantification of 39Ar recoil ejection from GA1550 biotite during neutron irradiation as a function of grain dimensions[J].Geochimica et Cosmochimica Acta, 2006, 70(6):1507-1517. doi: 10.1016/j.gca.2005.11.012

    CrossRef Google Scholar

    [25] Lo C H, Onstott T C.39Ar recoil artifacts in chloritized biotite[J].Geochimica et Cosmochimica Acta, 1989, 53:2697-2711. doi: 10.1016/0016-7037(89)90141-5

    CrossRef Google Scholar

    [26] Lin L H, Onstott T C, Dong H L.Backscattered 39Ar loss in fine-grained minerals:Implications for 40Ar/39Ar geochronology of clay[J].Geochimica et Cosmochimica Acta, 2000, 64(23):3965-3974. doi: 10.1016/S0016-7037(00)00439-7

    CrossRef Google Scholar

    [27] Min K, Renne P R, Huff W D.40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia[J].Earth and Planetary Science Letters, 2001, 185(1-2):121-134. doi: 10.1016/S0012-821X(00)00365-4

    CrossRef Google Scholar

    [28] Onstott T C, Miller M L, Ewing R C, et al.Recoil refinements:Implications for the 40Ar/39Ar dating technique[J].Geochimica et Cosmochimica Acta, 1995, 59(9):1821-1834. doi: 10.1016/0016-7037(95)00085-E

    CrossRef Google Scholar

    [29] Onstott T C, Mueller C, Vrolijk P J, et al.Laser 40Ar/39Ar microprobe analyses of fine-grained illite[J].Geochimica et Cosmochimica Acta, 1997, 61(18):3851-3861. doi: 10.1016/S0016-7037(97)00288-3

    CrossRef Google Scholar

    [30] Smith P E, Evensen N M, York D.First successful 40Ar-39Ar dating of glauconies:Argon recoil in single grains of cryptocrystalline material[J].Geology, 1993, 21(1):41-44.

    Google Scholar

    [31] Tseng H Y, Heaney P E, Onstott T C.Characterization of lattice strain induced by neutron irradiation[J].Physics and Chemistry of Minerals, 1995, 22(6):399-405.

    Google Scholar

    [32] Liewig N, Clauer N, Sommer F.Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone reservoirs[J].American Association of Petroleum Geologists Bulletin, 1987, 71:1467-1474.

    Google Scholar

    [33] 黄宝玲, 王大锐.沉积岩中自生黏土矿物分离提纯方法的改进[J].岩矿测试, 2001, 20(3):214-216. doi: 10.3969/j.issn.0254-5357.2001.03.012

    CrossRef Google Scholar

    Huang B L, Wang D R.An improved method for separation of authigenic clay minerals from sedimentary rocks[J].Rock and Mineral Analysis, 2001, 20(3):214-216. doi: 10.3969/j.issn.0254-5357.2001.03.012

    CrossRef Google Scholar

    [34] Clauer N.The K-Ar and 40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals[J].Chemical Geology, 2013, 354:163-185. doi: 10.1016/j.chemgeo.2013.05.030

    CrossRef Google Scholar

    [35] 李贺臣.超声波分选法分离蚀变绢云母[J].地质与勘探, 1982(11):31.

    Google Scholar

    Li H C.Ultrasonic separation of sericites[J].Geology and Exploration, 1982(11):31.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(6)

Article Metrics

Article views(2166) PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint