Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 6
Article Contents

Xue-lin DONG, Hai-yang HE, Qin CHU, Xiu-mei QIU, Xing-min TANG. Determination of Rare Earth Elements in Barite-associated Rare Earth Ores by Alkaline Precipitation Separation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004
Citation: Xue-lin DONG, Hai-yang HE, Qin CHU, Xiu-mei QIU, Xing-min TANG. Determination of Rare Earth Elements in Barite-associated Rare Earth Ores by Alkaline Precipitation Separation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004

Determination of Rare Earth Elements in Barite-associated Rare Earth Ores by Alkaline Precipitation Separation-Inductively Coupled Plasma-Mass Spectrometry

  • BACKGROUNDWhen inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine the rare earth elements (REE) in the barite-associated light rare earth ores, Ba and light rare earth elements La, Ce, Pr, Nd, Sm, cause severe mass spectral overlap interference to the medium and heavy rare earths. Therefore, under the condition that complete digestion of oress, if the appropriate pretreatment method can be selected to achieve effective separation of the target elements from the matrix, it will be beneficial to reduce mass spectrum interferences. OBJECTIVESTo reduce the mass spectrum interferences by establishing a simple and effective pretreatment method for separation of rare earth elements from barium and other coexisting elements in barite-associated rare earth ores. METHODSThe barite-associated rare earth ores samples were fused with sodium peroxide and sodium carbonate. After dissolution of the fusion cake, the target REE and the undesired barium were precipitated in triethanolamine solution, but some matrix elements like Si, Fe, Mg, and Al in samples, and most fusion agents, were separated by filtration. The target REE were secondly precipitated in ammonium hydroxide after dissolution of the precipitates by acid, so that Ba, Sr and Ca could be separated from REE. The separation exceeds 96%, so the mass spectrum interferences caused by barium polyatomic ions were effectively reduced. In addition, the interference correction coefficients by measuring the interference concentration at m/z 138-175 of the high concentration lighter rare earths standard single element solution were adopted to account for the oxide and hydroxide overlap problem for the determination of middle and heavier rare earth elements. RESULTSThe validity of the method was evaluated by analyses of rare earth ores certified reference materials and the results were in good agreement with certified values (|RE| < 10%). For the actual sample analysis of the barite-associated rare earth ores, the relative standard deviations (n=12) were from 0.5% to 4.6%, which proved that the method can be used to analyze rare earth elements in high-Ba ores. CONCLUSIONSThe results demonstrate that this method is both practical and effective for rare earth elements analysis in barite-associated rare earth ores.
  • 加载中
  • [1] 王春梅, 刘玉柱, 赵龙胜, 等.我国稀土材料与绿色制备技术现状与发展趋势[J].中国材料进展, 2018, 37(11):841-847.

    Google Scholar

    Wang C M, Liu Y Z, Zhao L S, et al.Current situation and development tendency on rare earth materials and its green preparation technologies in China[J].Materials China, 2018, 37(11):841-847.

    Google Scholar

    [2] 季根源, 张洪平, 李秋玲, 等.中国稀土矿产资源现状及其可持续发展对策[J].中国矿业, 2018, 27(8):9-16.

    Google Scholar

    Ji G Y, Zhang H P, Li Q L, et al.Current status of rare earth resources in China and strategies for its sustainable development[J].China Mining Magazine, 2018, 27(8):9-16.

    Google Scholar

    [3] 王宝磊, 吴玉锋, 章启军, 等.草酸盐重量法测定荧光粉废料中稀土氧化物的总量[J].稀土, 2016, 37(5):92-96.

    Google Scholar

    Wang B L, Wu Y F, Zhang Q J, et al.Determination of total rare earth oxides content in waste phosphors with oxalate gravimetric method[J].Chinese Rare Earths, 2016, 37(5):92-96.

    Google Scholar

    [4] 张燕辉, 杜若冰, 王振兴, 等.氯乙酸缓冲体系在稀土测定中的应用研究[J].中国稀土学报, 2013, 31(5):636-640.

    Google Scholar

    Zhang Y H, Du R B, Wang Z X, et al.Research on buffer solution of chloroacetic acid in rare earth detection[J].Journal of the Chinese Society of Rare Earths, 2013, 31(5):636-640.

    Google Scholar

    [5] 孙志峰, 张志刚, 张翼明, 等.镝铁合金中稀土总量的测定——EDTA容量法[J].稀土, 2010, 31(1):77-79. doi: 10.3969/j.issn.1004-0277.2010.01.017

    CrossRef Google Scholar

    Sun Z F, Zhang Z G, Zhang Y M, et al.Determination of total rare earth content in Dy-Fe alloy with EDTA volume method[J].Chinese Rare Earths, 2010, 31(1):77-79. doi: 10.3969/j.issn.1004-0277.2010.01.017

    CrossRef Google Scholar

    [6] Khorge C R, Patwardhan A A.Separation and determina-tion of REEs and Y in columbite-tantalite mineral by ICP-OES:A rapid approach[J].Atomic Spectroscopy, 2018, 39(2):75-80.

    Google Scholar

    [7] Balarama Krishna M V, Venkateswarlu G, Karunasagar D.Development of simple and robust microwave-assisted decomposition method for the determination of rare earth elements in coal fly ash by ICP-OES[J].Analytical Methods, 2017, 9:2031-2040. doi: 10.1039/C7AY00286F

    CrossRef Google Scholar

    [8] 艾军, 陶德刚, 李素芝.ICP-AES直接测定地质样品中微量稀土元素[J].武汉化工学院学报, 2001, 23(1):18-20. doi: 10.3969/j.issn.1674-2869.2001.01.006

    CrossRef Google Scholar

    Ai J, Tao D G, Li S Z.Direct determination of rare earth elements in geochemical samples by ICP-AES[J].Journal of Wuhan Institute of Technology, 2001, 23(1):18-20. doi: 10.3969/j.issn.1674-2869.2001.01.006

    CrossRef Google Scholar

    [9] 胡璇, 刘万超, 石磊.电感耦合等离子体原子发射光谱法测定赤泥浸出液中稀土元素[J].冶金分析, 2015, 35(12):46-50.

    Google Scholar

    Hu X, Liu W C, Shi L.Determination of rare earth elements in leaching solution of red mud by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2015, 35(12):46-50.

    Google Scholar

    [10] 吴石头, 王亚平, 孙德忠, 等.电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素——四种前处理方法的比较[J].岩矿测试, 2014, 33(1):12-19. doi: 10.3969/j.issn.0254-5357.2014.01.003

    CrossRef Google Scholar

    Wu S T, Wang Y P, Sun D Z, et al.Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry:A comparison of four different pretreatment methods[J].Rock and Mineral Analysis, 2014, 33(1):12-19. doi: 10.3969/j.issn.0254-5357.2014.01.003

    CrossRef Google Scholar

    [11] 尹明, 符廷发, 袁玄晖.感耦等离子体质谱法测定地质样品中痕量稀土元素的研究[J].岩矿测试, 1989, 8(2):81-86.

    Google Scholar

    Yin M, Fu T F, Yuan X H.A study of determination of trace REE in geological samples by ICP-MS[J].Rock and Mineral Analysis, 1989, 8(2):81-86.

    Google Scholar

    [12] Vaughan M A, Horlick G.Correction procedures for rare earth element analyses in inductively coupled plasma-mass spectrometry[J].Applied Spectroscopy, 1990, 44(4):587-593. doi: 10.1366/0003702904087488

    CrossRef Google Scholar

    [13] Aggarwal J K, Shabani M B, Palmer M R, et al.Deter-mination of the rare earth elements in aqueous samples at sub-ppt levels by inductively coupled plasma mass spectrometry and flow injection ICPMS[J].Analytical Chemistry, 1996, 68(24):4418-4423. doi: 10.1021/ac9602074

    CrossRef Google Scholar

    [14] 胡圣虹, 林守麟, 刘勇胜, 等.等离子体质谱法测定地质样品中痕量稀土元素的基体效应及多原子离子干扰的校正研究[J].高等学校化学学报, 2000, 21(3):368-372. doi: 10.3321/j.issn:0251-0790.2000.03.009

    CrossRef Google Scholar

    Hu S H, Lin S L, Liu Y S, et al.Studies on the calibration of matrix effects and polyatomic ion for rare earth elements in geological samples by ICP-MS[J].Chemical Jouranl of Chinese Universities, 2000, 21(3):368-372. doi: 10.3321/j.issn:0251-0790.2000.03.009

    CrossRef Google Scholar

    [15] 王冠, 李华玲, 任静, 等.高分辨电感耦合等离子体质谱法测定地质样品中稀土元素的氧化物干扰研究[J].岩矿测试, 2013, 32(4):561-567. doi: 10.3969/j.issn.0254-5357.2013.04.007

    CrossRef Google Scholar

    Wang G, Li H L, Ren J, et al.Characterization of oxide interference for the determination of rare earth elements in geological samples by high resolution ICP-MS[J].Rock and Mineral Analysis, 2013, 32(4):561-567. doi: 10.3969/j.issn.0254-5357.2013.04.007

    CrossRef Google Scholar

    [16] Naga B K, Deb S B, Saxena M K, et al.Quantification of trace level rare earth elements in Al matrices by ICP-MS[J].Radiochmica Acta, 2019, 107(3):215-220. doi: 10.1515/ract-2018-3019

    CrossRef Google Scholar

    [17] 吴磊, 刘义博, 王家松, 等.高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究[J].岩矿测试, 2018, 37(6):637-643.

    Google Scholar

    Wu L, Liu Y B, Wang J S, et al.Sample treatment methods for determination of rare earth elements in manganese ore by high-pressure closed digestion-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2018, 37(6):637-643.

    Google Scholar

    [18] Yan X Y, Dai S F, Graham I T, et al.Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS[J].International Journal of Coal Geology, 2018, 191:152-156. doi: 10.1016/j.coal.2018.03.009

    CrossRef Google Scholar

    [19] Wang Y Q, Huang X X, Sun Y L, et al.A new method for the separation of LREEs in geological materials using a single TODGA resin column and its application to the determination of Nd isotope compositions by MC-ICPMS[J].Analytical Methods, 2017, 9(23):3531-3540. doi: 10.1039/C7AY00966F

    CrossRef Google Scholar

    [20] Satyanarayanan M, Balaram V, Sawant S S, et al.Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J].Atomic Spectroscopy, 2018, 39(1):1-15.

    Google Scholar

    [21] 袁静, 沈加林, 刘建坤, 等.高能偏振能量色散X射线荧光光谱仪测定地质样品中稀土元素[J].光谱学与光谱分析, 2018, 38(2):582-589.

    Google Scholar

    Yuan J, Shen J L, Liu J K, et al.Determination of rare earth elements in geological samples by high-energy polarized energy-dispersive X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2018, 38(2):582-589.

    Google Scholar

    [22] 周伟, 曾梦, 王健, 等.熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J].岩矿测试, 2018, 37(3):298-305.

    Google Scholar

    Zhou W, Zeng M, Wang J, et al.Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J].Rock and Mineral Analysis, 2018, 37(3):298-305.

    Google Scholar

    [23] 田春霞, 刘文华, 刘璟.稀土元素分析[J].分析试验室, 2018, 37(2):222-248.

    Google Scholar

    Tian C X, Liu W H, Liu J.Rare earth elements analysis[J].Chinese Journal of Analysis Laboratory, 2018, 37(2):222-248.

    Google Scholar

    [24] 胡圣虹, 李清澜, 林守麟, 等.感耦等离子体质谱法直接测定碳酸盐岩中超痕量稀土元素[J].岩矿测试, 2000, 19(4):249-253. doi: 10.3969/j.issn.0254-5357.2000.04.003

    CrossRef Google Scholar

    Hu S H, Li Q L, Lin S L, et al.Determination of ultra-trace rare earth elements in carbonate by ICP-MS[J].Rock and Mineral Analysis, 2000, 19(4):249-253. doi: 10.3969/j.issn.0254-5357.2000.04.003

    CrossRef Google Scholar

    [25] Raut N M, Huang L, Lin K, et al.Uncertainty propaga-tion through correction methodology for the determination of rare earth elements by quadrupole based inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2005, 530(1):91-103. doi: 10.1016/j.aca.2004.08.067

    CrossRef Google Scholar

    [26] 曹心德, 尹明, 王晓蓉.AG50W-x8树脂分离去除钡的多原子离子对电感耦合等离子体质谱法测定稀土元素的质谱干扰[J].分析化学, 2001, 29(8):890-893. doi: 10.3321/j.issn:0253-3820.2001.08.005

    CrossRef Google Scholar

    Cao X D, Yin M, Wang X R.Elimination of the spectral interference from barium polyatomic ions on rare earth elements in inductively coupled plasma mass spectrometry by AG50W-x8 cation exchange chromatographic separation[J].Chinese Journal of Analytical Chemistry, 2001, 29(8):890-893. doi: 10.3321/j.issn:0253-3820.2001.08.005

    CrossRef Google Scholar

    [27] 李艳玲, 熊采华, 黄慧萍, 等.基体分离-电感耦合等离子体质谱测定重晶石中超痕量稀土元素[J].岩矿测试, 2005, 24(2):87-92. doi: 10.3969/j.issn.0254-5357.2005.02.002

    CrossRef Google Scholar

    Li Y L, Xiong C H, Huang H P, et al.Determination of ultra-trace rare earth elements in barite by ICP-MS after matrix separation[J].Rock and Mineral Analysis, 2005, 24(2):87-92. doi: 10.3969/j.issn.0254-5357.2005.02.002

    CrossRef Google Scholar

    [28] 尹明, 李冰.感耦等离子体质谱法在高纯稀土氧化物分析中基体谱线干扰的研究[J].岩矿测试, 1994, 13(2):81-91.

    Google Scholar

    Yin M, Li B.Matrix-induced polyatomic ion interferences in inductively coupled plasma mass spectrometric analysis of high purity rare earth oxides[J].Rock and Mineral Analysis, 1994, 13(2):81-91.

    Google Scholar

    [29] 刘贵磊, 许俊玉, 温宏利, 等.动态反应池-电感耦合等离子体质谱法精确测定配分差异显著的重稀土元素[J].桂林理工大学学报, 2016, 36(1):176-183. doi: 10.3969/j.issn.1674-9057.2016.01.024

    CrossRef Google Scholar

    Liu G L, Xu J Y, Wen H L, et al.Determination of heavy rare earth elements of special rare earth ores by inductively coupled plasma mass spectrometry with a dynamic reaction cell[J].Journal of Guilin University of Technology, 2016, 36(1):176-183. doi: 10.3969/j.issn.1674-9057.2016.01.024

    CrossRef Google Scholar

    [30] 陈从德, 蒲广平.牦牛坪稀土矿床地质特征及其成因初探[J].地质与勘探, 1991(5):18-23.

    Google Scholar

    Chen C D, Pu G P.Geological features and genesis of the Maoniuping rare earth element deposit, Sichuan[J].Geology and Exploration, 1991(5):18-23.

    Google Scholar

    [31] 《岩石矿物分析》编委会.岩石矿物分析(第四版)[M].北京:地质出版社, 2011.

    Google Scholar

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (The Fourth Edition)[M].Beijing:Geological Publishing House, 2011.

    Google Scholar

    [32] Taylor S R, Mcclenan S M.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell, 1985:312.

    Google Scholar

    [33] Yu Z S, Robinson P, McGoldrick P.An evaluation of me-thods for the chemical decomposition of geological materials for trace element determination using ICP-MS[J].Geostandards & Geoanalytical Research, 2010, 25(2-3):199-217.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(6)

Article Metrics

Article views(2262) PDF downloads(137) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint