Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 6
Article Contents

Xiao-li QIN, Gui TIAN, Chao-chang LI, Zhi-lin JIANG. Determination of Thorium and Potassium Oxide in Geological Samples by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 741-746. doi: 10.15898/j.cnki.11-2131/td.201812290142
Citation: Xiao-li QIN, Gui TIAN, Chao-chang LI, Zhi-lin JIANG. Determination of Thorium and Potassium Oxide in Geological Samples by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 741-746. doi: 10.15898/j.cnki.11-2131/td.201812290142

Determination of Thorium and Potassium Oxide in Geological Samples by Inductively Coupled Plasma-Optical Emission Spectrometry

  • BACKGROUNDSimultaneous determination of thorium and potassium in geological samples can provide an important basis for exploration of radioactive mineral resources and evaluation of the natural radioactive ecological environment. The thorium in geological samples is usually digested by alkali fusion in traditional methods and determined by spectrophotometry. The traditional method is long, complex and not suitable for simultaneous determination of multiple elements. The potassium oxide in geological samples is digested by acid and generally determined by flame atomic absorption spectrometry, which requires diluting the solution with high concentration and has low detection efficiency. The determination of thorium and potassium oxide involves two different analytical methods and analytical instruments. OBJECTIVESTo establish an analytical method for simultaneous determination of thorium and potassium oxide in geological samples. METHODSChemical solvent which consists of nitric acid, hydrofluoric acid and perchloric acid, was identified according to the characteristics of the chemical composition of the geological samples. The geological samples were dissolved with this solvent and extracted with nitric acid. The content of thorium and potassium oxide in geological samples was measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) at wavelengths of 401.913nm and 766.490nm, respectively by radial observation mode. RESULTSThe correlation coefficient of the calibration curve of thorium and potassium oxide was greater than 0.999 and the detection limit of this method was 0.69μg/g and 0.008%, respectively. The measured value of the standard substance was consistent with the identified value, and the absolute logarithmic error of the two values was less than 0.1. The relative standard deviation was less than 6.0% and the recovery ranged from 96.0% to 104.0%. CONCLUSIONSThis method meets the requirements of the testing quality management standard for geological and mineral laboratories.
  • 加载中
  • [1] 郭志英, 梁月琴, 崔晓磊, 等.电感耦合等离子体质谱法测定土壤钍含量以及记忆效应的研究[J].中国辐射卫生, 2013, 22(1):1-7.

    Google Scholar

    Guo Z Y, Liang Y Q, Cui X L, et al.Determination of thorium in soil by inductively coupled plasma mass spectrometry and study of thorium memory effect in analysis[J].Chinese Journal of Radiological Health, 2013, 22(1):1-7.

    Google Scholar

    [2] 潘自强.电离辐射环境监测与评价[M].北京:原子能出版社, 2007:389.

    Google Scholar

    Pan Z Q.Monitoring and Evaluation of Ionizing Radiation Environment[M].Beijing:Atomic Energy Press, 2007:389.

    Google Scholar

    [3] 程业勋, 王南萍, 侯胜利.核辐射场与放射性勘查[M].北京:地质出版社, 2005:43-44.

    Google Scholar

    Cheng Y X, Wang N P, Hou S L.Nuclear Geophysical Survey[M].Beijing:Geological Publishing House, 2005:43-44.

    Google Scholar

    [4] 刘立坤, 郭冬发, 黄秋红.岩石矿物中铀钍的分析方法进展[J].中国无机分析化学, 2012, 2(2):6-9. doi: 10.3969/j.issn.2095-1035.2012.02.0002

    CrossRef Google Scholar

    Liu L K, Guo D F, Huang Q H.Progress in analytical methods for determination of uranium and thorium in rocks and minerals[J].Chinese Journal of Inorganic Analytical Chemistry, 2012, 2(2):6-9. doi: 10.3969/j.issn.2095-1035.2012.02.0002

    CrossRef Google Scholar

    [5] 王敬, 王火焰.不同仪器测钾性能及优缺点比较研究[J].土壤学报, 2013, 50(2):340-348.

    Google Scholar

    Wang J, Wang H Y.Comparison between different instruments in potassium determination performance[J].Acta Pedologica Sinica, 2013, 50(2):340-348.

    Google Scholar

    [6] 李琳俐, 刘资文, 罗孟杰, 等.电感耦合等离子体原子发射光谱法测定钾长石矿中的多种元素[J].理化检验(化学分册), 2015, 51(7):917-920.

    Google Scholar

    Li L L, Liu Z W, Luo M J, et al.Determination of elements in potash feldspar ores by ICP-AES[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(7):917-920.

    Google Scholar

    [7] 李志伟, 赵晓亮, 李珍, 等.敞口酸熔-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素[J].岩矿测试, 2017, 36(6):594-600.

    Google Scholar

    Li Z W, Zhao X L, Li Z, et al.Determination of niobium, tantalun and associated elements in niobium-tantalum ore by inductively coupled plasma-optical emission spectrometry with open acid dissolution[J].Rock and Mineral Analysis, 2017, 36(6):594-600.

    Google Scholar

    [8] 杨华, 张永刚.电感耦合等离子体原子发射光谱仪(ICP-OES)测定水系沉积物中6种重金属元素[J].中国无机分析化学, 2014, 4(1):22-24. doi: 10.3969/j.issn.2095-1035.2014.01.006

    CrossRef Google Scholar

    Yang H, Zhang Y G.Determination of six heavy metal elements in stream sediment by ICP-OES together with automated sample digestion system[J].Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1):22-24. doi: 10.3969/j.issn.2095-1035.2014.01.006

    CrossRef Google Scholar

    [9] 孙晓慧, 李章, 刘希良.微波消解-电感耦合等离子体原子发射光谱法测定土壤和水系沉积物中15种组分[J].冶金分析, 2014, 34(11):56-60.

    Google Scholar

    Sun X H, Li Z, Liu X L.Determination of fifteen components in soil and stream sediment by inductively coupled plasma atomic emission spectrometry after microwave digestion[J].Metallurgical Analysis, 2014, 34(11):56-60.

    Google Scholar

    [10] 刘峰, 秦樊鑫, 胡继伟, 等.不同混合酸消解样品对电感耦合等离子体原子发射光谱法测定土壤中重金属含量的影响[J].理化检验(化学分册), 2011, 47(8):951-954.

    Google Scholar

    Liu F, Qin F X, Hu J W, et al.Effects of different acid mixtures for sample digestion on the ICP-AES determination of heavy metal elements in soil[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(8):951-954.

    Google Scholar

    [11] 姜云军, 李星, 姜海伦, 等.四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J].岩矿测试, 2018, 37(2):152-158.

    Google Scholar

    Jiang Y J, Li X, Jiang H L, et al.Determination of sulfur in soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J].Rock and Mineral Analysis, 2018, 37(2):152-158.

    Google Scholar

    [12] 余海军, 张莉莉, 屈志朋, 等.微波消解-电感耦合等离子体原子发射光谱(ICP-AES)法同时测定土壤中主次元素[J].中国无机分析化学, 2019, 9(1):34-38. doi: 10.3969/j.issn.2095-1035.2019.01.008

    CrossRef Google Scholar

    Yu H J, Zhang L L, Qu Z P, et al.Determination of primary and secondary elements in soil by inductively coupled plasma atomic emission spectrometry with microwave digestion[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1):34-38. doi: 10.3969/j.issn.2095-1035.2019.01.008

    CrossRef Google Scholar

    [13] 王小强.电感耦合等离子体发射光谱法同时测定长石矿物中钾钠钙镁铝钛铁[J].岩矿测试, 2012, 31(3):442-445. doi: 10.3969/j.issn.0254-5357.2012.03.011

    CrossRef Google Scholar

    Wang X Q.Simultaneous quantification of K, Na, Ca, Mg, Al, Ti and Fe in feldspar samples by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2012, 31(3):442-445. doi: 10.3969/j.issn.0254-5357.2012.03.011

    CrossRef Google Scholar

    [14] 倪文山.氢氧化镁共沉淀-电感耦合等离子体原子发射光谱法测定矿石样品中钍[J].冶金分析, 2013, 33(1):13-16. doi: 10.3969/j.issn.1000-7571.2013.01.003

    CrossRef Google Scholar

    Ni W S.Determination of thorium in mineral samples by inductively coupled plasma atomic emission spectrometry after preconcentration through coprecipitation of magnesium hydroxide[J].Metallurgical Analysis, 2013, 33(1):13-16. doi: 10.3969/j.issn.1000-7571.2013.01.003

    CrossRef Google Scholar

    [15] 汪君, 王頔, 邓长生, 等.电感耦合等离子体发射光谱法测定地球化学样品中的钍[J].岩矿测试, 2014, 33(4):501-505. doi: 10.3969/j.issn.0254-5357.2014.04.008

    CrossRef Google Scholar

    Wang J, Wang D, Deng C S, et al.Determination of thorium in geochemical sample by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2014, 33(4):501-505. doi: 10.3969/j.issn.0254-5357.2014.04.008

    CrossRef Google Scholar

    [16] 霍红英.微波消解-电感耦合等离子体原子发射光谱法测定钒钛精矿中钾和钠[J].冶金分析, 2017, 37(6):75-79.

    Google Scholar

    Huo H Y.Determination of potassiuman sodium in vanadium-titanium-iron concentrate by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2017, 37(6):75-79.

    Google Scholar

    [17] 卜道露, 杨旭, 李高湖, 等.ICP-MS测定地球化学样品中钍铀等14种元素[J].化学研究与应用, 2017, 29(8):1254-1257. doi: 10.3969/j.issn.1004-1656.2017.08.028

    CrossRef Google Scholar

    Bu D L, Yang X, Li G H, et al.Determination of 14 elements including thorium, uranium in geochemical samples by inductively coupled plasma-mass spectrometry[J].Chemical Research and Application, 2017, 29(8):1254-1257. doi: 10.3969/j.issn.1004-1656.2017.08.028

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article Metrics

Article views(1959) PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint