[1] |
倪培, 范宏瑞, 丁俊英.流体包裹体研究进展[J].矿物岩石地球化学通报, 2014, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001
CrossRef Google Scholar
Ni P, Fan H R, Ding J Y.Progress in fluid inclusions[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001
CrossRef Google Scholar
|
[2] |
Lowell R M, Nikita M, Maximb P, et al.Volatile contents of primitive bubble-bearing melt inclusions from Klyuchevskoy volcano, Kamchatka:Comparison of volatile contents determined by mass-balance versus experimental homogenization[J].Journal of Volcanology and Geothermal Research, 2018, 358:124-131. doi: 10.1016/j.jvolgeores.2018.03.007
CrossRef Google Scholar
|
[3] |
Metrich N, Wallace P J.Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions[J].Reviews in Mineralogy and Geochemistry, 2008, 69(1):363-402. doi: 10.2138/rmg.2008.69.10
CrossRef Google Scholar
|
[4] |
汤庆艳, 李建平, 张铭杰, 等.东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件[J].岩石学报, 2017, 33(1):104-114.
Google Scholar
Tang Q Y, Li J P, Zhang M J, et al.The volatile conditions of ore-forming magma for the Xiarihamu Ni-Cu sulfide deposit in East Kunlun orogenic belt, Western China:Constraints from chemical and carbon isotopic compositions of volatiles[J].Acta Petrologica Sinica, 2017, 33(1):104-114.
Google Scholar
|
[5] |
米敬奎, 王晓梅, 朱光有, 等.利用包裹体中气体地球化学特征与源岩生气模拟实验探讨鄂尔多斯盆地靖边气田天然气来源[J].岩石学报, 2012, 28(3):859-869.
Google Scholar
Mi J K, Wang X M, Zhu G Y, et al.Origin determination of gas from Jingbian gas field in Ordos Basin collective through the geochemistry of gas from inclusions and source rock pyrolysis[J].Acta Petrologica Sinica, 2012, 28(3):859-869.
Google Scholar
|
[6] |
Armstrong L S, Hirschmann M M, Stanley B D, et al.Speciation and solubility of reduced C-O-H-N volatiles in mafic melt:Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets[J].Geochimica et Cosmochimica Acta, 2015, 171:283-302. doi: 10.1016/j.gca.2015.07.007
CrossRef Google Scholar
|
[7] |
何佳乐, 潘忠习, 冉敬.激光拉曼光谱法在单个流体包裹体研究中的应用进展[J].岩矿测试, 2015, 34(4):383-391.
Google Scholar
He J L, Pan Z X, Ran J.Research progress on the application of laser Raman spectroscopy in single fluid inclusions[J].Rock and Mineral Analysis, 2015, 34(4):383-391.
Google Scholar
|
[8] |
周姣花, 徐金沙, 牛睿, 等.利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态[J].岩矿测试, 2018, 37(2):130-138.
Google Scholar
Zhou J H, Xu J S, Niu R, et al.Application of SEM and EDS to analyze the occurrence of platinum group elements and characteristics of platinum group minerals in the Pt-Pd deposit from Huili, Sichuan Province, China[J].Rock and Mineral Analysis, 2018, 37(2):130-138.
Google Scholar
|
[9] |
张凤奇, 钟红利, 张凤博, 等.鄂尔多斯盆地X地区延长组长7油层组致密油藏流体包裹体特征及成藏期次[J].兰州大学学报(自然科学版), 2016, 52(6):722-727.
Google Scholar
Zhang F Q, Zhong H L, Zhang F B, et al.Hydrocarbon accumulation dating by fluid inclusion characteristics in Chang 7 tight oil reservoirs of Yanchang Formation of X area, Ordos Basin[J].Journal of Lanzhou University (Natural Sciences), 2016, 52(6):722-727.
Google Scholar
|
[10] |
杨丹, 徐文艺.激光拉曼光谱测定流体包裹体成分研究进展[J].光谱学与光谱分析, 2014, 34(4):874-878. doi: 10.3964/j.issn.1000-0593(2014)04-0874-05
CrossRef Google Scholar
Yang D, Xu W Y.Development of Raman spectroscopy study of fluid inclusion[J].Spectroscopy and Spectral Analysis, 2014, 34(4):874-878. doi: 10.3964/j.issn.1000-0593(2014)04-0874-05
CrossRef Google Scholar
|
[11] |
李立武, 刘艳, 王先彬, 等.高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用[J].岩矿测试, 2017, 36(3):222-230.
Google Scholar
Li L W, Liu Y, Wang X B, et al.Development of a combined device with high vacuum and pulsed discharge gas chromatography and its application in chemical analysis of gases from rock samples[J].Rock and Mineral Analysis, 2017, 36(3):222-230.
Google Scholar
|
[12] |
Mironova F.Volatile components of natural fluids:Evi-dence from inclusions in minerals:Methods and results[J].Geochemistry International, 2010, 48(1):83-90.
Google Scholar
|
[13] |
杨丹, 徐文艺, 崔艳合, 等.二维气相色谱法测定流体包裹体中气相成分[J].岩矿测试, 2007, 26(6):451-454. doi: 10.3969/j.issn.0254-5357.2007.06.005
CrossRef Google Scholar
Yang D, Xu W Y, Cui Y H, et al.Determination of gaseous components in fluid inclusion samples by two-dimensional gas chromatography[J].Rock and Mineral Analysis, 2007, 26(6):451-454. doi: 10.3969/j.issn.0254-5357.2007.06.005
CrossRef Google Scholar
|
[14] |
朱和平, 王莉娟.四极质谱测定流体包裹体中的气相成分[J].中国科学(D辑), 2001, 31(7):586-590.
Google Scholar
Zhu H P, Wang L J.Quadrupole mass spectrometry for the determination of gas composition in fluid inclusions[J].Science in China(Series D), 2001, 31(7):586-590.
Google Scholar
|
[15] |
Azmy K, Blamey N J F.Source of diagenetic fluids from fluid-inclusion gas ratios[J].Chemical Geology, 2013, 347(6):246-254.
Google Scholar
|
[16] |
Blamey N J F.Composition and evolution of crustal, geo-thermal and hydrothermal fluids interpreted using quantitative fluid inclusion gas analysis[J].Journal of Geochemical Exploration, 2012, 116-117:17-27. doi: 10.1016/j.gexplo.2012.03.001
CrossRef Google Scholar
|
[17] |
Bekaert D V, Avice G, Marty B, et al.Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon[J].Geochimica et Cosmochimica Acta, 2017, 218:114-131. doi: 10.1016/j.gca.2017.08.041
CrossRef Google Scholar
|
[18] |
Zhang M J, Tang Q Y, Hu P Q, et al.Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-(PGE) sulfide ore-bearing ultramafic intrusion, Western China[J].Chemical Geology, 2013, 339:301-312. doi: 10.1016/j.chemgeo.2012.07.023
CrossRef Google Scholar
|
[19] |
孙明良, 叶先仁.固体样品中He、Ar同位素的质谱测定[J].沉积学报, 1997, 15(1):48-53.
Google Scholar
Sun M L, Ye X R.Measurement on He and Ar isotopic compositions in solid samples by mass spectrometry[J].Acta Sedimentologica Sinica, 1997, 15(1):48-53.
Google Scholar
|
[20] |
Tolstikhin I, Kamensky I, Tarakanov S, et al.Noble gas isotope sites and mobility in mafic rocks and olivine[J].Geochimica et Cosmochimica Acta, 2010, 74:1436-1447. doi: 10.1016/j.gca.2009.11.001
CrossRef Google Scholar
|
[21] |
Broadley M W, Ballentine C J, Chavrit D, et al.Sedi-mentary halogens and noble gases within Western Antarctic xenoliths:Implications of extensive volatile recycling to the sub continental lithospheric mantle[J].Geochimica et Cosmochimica Acta, 2016, 176:139-156. doi: 10.1016/j.gca.2015.12.013
CrossRef Google Scholar
|
[22] |
张铭杰, 王先彬, 李立武.对幔源岩中流体组分的不同测定方法评价[J].地质论评, 2000, 46(2):160-166. doi: 10.3321/j.issn:0371-5736.2000.02.006
CrossRef Google Scholar
Zhang M J, Wang X B, Li L W.An appraisal of different experimental methods in the determination of fluid composition in mantle-derived rocks[J].Geological Review, 2000, 46(2):160-166. doi: 10.3321/j.issn:0371-5736.2000.02.006
CrossRef Google Scholar
|
[23] |
李洪伟, 冯连君, 陈健, 等.密封石英管法快速分析包裹体中氢同位素[J].质谱学报, 2015, 36(1):40-44.
Google Scholar
Li H W, Feng L J, Chen J, et al.A rapid method for determination of the hydrogen isotope of inclusions by sealed quartz tube[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(1):40-44.
Google Scholar
|
[24] |
王广, 李立武.玄武岩热解氢同位素在线分析[J].岩矿测试, 2006, 25(4):311-314. doi: 10.3969/j.issn.0254-5357.2006.04.003
CrossRef Google Scholar
Wang G, Li L W.On-line analysis of hydrogen isotopes of basalt with stepped heating degas[J].Rock and Mineral Analysis, 2006, 25(4):311-314. doi: 10.3969/j.issn.0254-5357.2006.04.003
CrossRef Google Scholar
|
[25] |
王小东, 张铭杰, 伏珏蓉, 等.稀有气体同位素对岩浆侵入方向的制约:以夏日哈木镍铜硫化物矿床为例[J].岩石学报, 2018, 34(11):3433-3444.
Google Scholar
Wang X D, Zhang M J, Fu J R, et al.The magmatic intrusive direction constrains from noble gas isotopic compositions:A case study of the Xiarihamu Ni-Cu sulfide deposit in East Kunlun Orogenic Belt, China[J].Acta Petrologica Sinica, 2018, 34(11):3433-3444.
Google Scholar
|
[26] |
汤庆艳, 张铭杰, 余明, 等.晚二叠世峨眉山地幔柱岩浆成矿作用[J].岩石矿物学杂志, 2013, 32(5):680-692. doi: 10.3969/j.issn.1000-6524.2013.05.010
CrossRef Google Scholar
Tang Q Y, Zhang M J, Yu M, et al.The magmatic ore-forming system of Late-Permian Emeishan mantle plume[J].Acta Petrologica et Mineralogica, 2013, 32(5):680-692. doi: 10.3969/j.issn.1000-6524.2013.05.010
CrossRef Google Scholar
|
[27] |
Huang Y H, Tarantola A, Wang W J, et al.Charge history of CO2 in Lishui Sag, East China Sea Basin:Evidence from quantitative Raman analysis of CO2-bearing fluid inclusions[J].Marine and Petroleum Geology, 2018, 98:50-65. doi: 10.1016/j.marpetgeo.2018.07.030
CrossRef Google Scholar
|
[28] |
Caumona M C, Robert P, Laverret E, et al.Determination of methane content in NaCl-H2O fluid inclusions by Raman spectroscopy:Calibration and application to the external part of the Central Alps (Switzerland)[J].Chemical Geology, 2014, 378-379:52-61. doi: 10.1016/j.chemgeo.2014.03.016
CrossRef Google Scholar
|
[29] |
Tristan A, Matthew J S, Brian G R, et al.In situ quan-titative analysis of individual H2O-CO2 fluid inclusions by laser Raman spectroscopy[J].Chemical Geology, 2007, 237:255-263. doi: 10.1016/j.chemgeo.2006.06.025
CrossRef Google Scholar
|
[30] |
顾长光.碳酸盐矿物热分解机理的研究[J].矿物学报, 1990, 10(3):266-272. doi: 10.3321/j.issn:1000-4734.1990.03.012
CrossRef Google Scholar
Gu C G.A study on the mechanism of thermal decomposition of carbonate minerals[J].Acta Mineralogica Sinica, 1990, 10(3):266-272. doi: 10.3321/j.issn:1000-4734.1990.03.012
CrossRef Google Scholar
|
[31] |
Severs M J, Azbej T, Thomas J B, et al.Experimental determination of H2O loss from melt inclusions during laboratory heating:Evidence from Raman spectroscopy[J].Chemical Geology, 2007, 237:358-371. doi: 10.1016/j.chemgeo.2006.07.008
CrossRef Google Scholar
|
[32] |
Doucet L S, Peslier A H, Ionov D A, et al.High water contents in the Siberian Cratonic mantle linked to metasomatism:A FTIR study of Udachnaya peridotite xenoliths[J].Geochimica et Cosmochimica Acta, 2014, 137:159-187. doi: 10.1016/j.gca.2014.04.011
CrossRef Google Scholar
|