Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 5
Article Contents

Li-feng ZHANG, Jie-min LIU, Yi-ming ZHANG. Distribution Characteristics of Rare Earth Elements in Plants and Soils from the Bayan Obo Mining Area[J]. Rock and Mineral Analysis, 2019, 38(5): 556-564. doi: 10.15898/j.cnki.11-2131/td.201809200107
Citation: Li-feng ZHANG, Jie-min LIU, Yi-ming ZHANG. Distribution Characteristics of Rare Earth Elements in Plants and Soils from the Bayan Obo Mining Area[J]. Rock and Mineral Analysis, 2019, 38(5): 556-564. doi: 10.15898/j.cnki.11-2131/td.201809200107

Distribution Characteristics of Rare Earth Elements in Plants and Soils from the Bayan Obo Mining Area

  • BACKGROUNDThe Bayan Obo mining area is the main producing area of rare earth elements. During mining and refining, rare earth elements enter plants through migration and enrichment. Study on the distribution characteristics and migration patterns of rare earth elements will provide data support for bioremediation following the closure of the Bayan Obo ore body pit. OBJECTIVESTo study the distribution characteristics and migration patterns of rare earth elements in soil and plants. METHODSSeven soil sampling points were set up, and seven plant types including Honeysuckle, Artemisia desertorum, Astragalus Adsurgens Pall, Agriophyllum squarrosum (L.) Moq, Artemisia carvifolia, Populus simonii Carr and Salsola collina Pall were collected. The content of rare earth elements in soil and roots, stems, leaves (or flowers) and whole plants was determined by inductively coupled plasma-mass spectrometry. RESULTSWith the increase of the distance between the sampling area and the main mining area, the rare earth element content in the soil samples decreased. The rare earth element content of Honeysuckle was the highest in the studied plants, whereas it was the lowest in Artemisia carvifolia. The rare earth element content in whole plant and various parts (root, stems, leaves or flowers) in different plants were analyzed by multiple linear regression analysis. The rare earth element content of leaves (or flowers) accounted for the largest proportion in whole bead plants. In addition, the content of rare earth elements in plants was basically unchanged in different seasons. The rare earth elements with higher content were 0.0035%-0.020%, 0.0012%-0.011%, 0.0010%-0.0094% and 0.00036%-0.0046% for Ce, La, Nd and Pr, respectively. CONCLUSIONSAccording to the gradual reduction pattern of rare earth elements in soil samples, the rare earth source of the soil around the mining area may be caused by the diffusion of ore during mining and refining. According to the rare earth enrichment ability of plants, Honeysuckle with strong enrichment ability of rare earth can be used for bioremediation of mines, after the mine is closed.
  • 加载中
  • [1] 郭财胜, 李梅, 柳召刚, 等.白云鄂博稀土、铌资源综合利用现状及新思路[J].稀土, 2014, 35(1):96-100.

    Google Scholar

    Guo C S, Li M, Liu Z G, et al.Present status and new ideas on utilization of Bayan Obo rare earth and niobium resource[J]. Chinese Rare Earths, 2014, 35(1):96-100.

    Google Scholar

    [2] 李振民, 王勇, 牛京考.中国稀土资源开发的生态环境影响及维护政策[J].稀土, 2017, 38(6):144-154.

    Google Scholar

    Li Z M, Wang Y, Niu J K.The influence of rare earth resources exploitation on ecology and environment and the protection policy[J]. Chinese Rare Earths, 2017, 38(6):144-154.

    Google Scholar

    [3] 陈祖义.稀土的生物效应与农用稀土的累积影响[J].农村生态环境, 1999, 15(3):44-48.

    Google Scholar

    Chen Z Y.Reflection on the biological effects of rare earth and the cumulative impacts of its agricultural application[J]. Rural Eco-Environment, 1999, 15(3):44-48.

    Google Scholar

    [4] 刘贝贝, 朱芮, 于子博, 等.氯化镧对不同发育期仔鼠肝脏抗氧化能力的影响[J].现代预防医学, 2018, 45(8):1458-1461.

    Google Scholar

    Liu B B, Zhu R, Yu Z B, et al.Effect of lanthanum chloride on hepatic antioxidative ability in different developing periods of rat[J]. Modern Preventive Medicine, 2018, 45(8):1458-1461.

    Google Scholar

    [5] 李炳辉, 张丽英, 陈晨, 等.钇早期暴露对大鼠海马组织生长发育的组织形态学影响[J].中国食品卫生杂志, 2016, 28(2):160-165.

    Google Scholar

    Li B H, Zhang L Y, Chen C, et al.Effect of developmental histomorphology of rat hippocampus after early stage yttrium exposure[J]. Chinese Journal of Food Hygiene, 2016, 28(2):160-165.

    Google Scholar

    [6] 杨宁, 纪乐, 姜珊, 等.氧化钕:分布特征及毒理学研究进展[J].环境与职业医学, 2018, 35(8):770-773.

    Google Scholar

    Yang N, Ji L, Jiang S, et al.Toxicological studies on neodymium oxide[J]. Journal of Environmental and Occupational Medicine, 2018, 35(8):770-773.

    Google Scholar

    [7] 金姝兰, 黄益宗, 胡莹, 等.江西典型稀土矿区土壤和农作物中稀土元素含量及其健康风险评价[J].环境科学学报, 2014, 34(12):3084-3093.

    Google Scholar

    Jin Z L, Huang Y Z, Hu Y, et al.Rare earth elements content and health risk assessment of soil and crops in typical rare earth mine area in Jiangxi Province[J]. Acta Scientiae Circumstantiae, 2014, 34(12):3084-3093.

    Google Scholar

    [8] 刘湘虎.稀土元素对动物及人的影响[J].中国畜牧兽医, 2008, 35(8):158-160.

    Google Scholar

    Liu X H.Rare earths influence animal and human beings[J]. China Animal Husbandry & Veterinary Medicine, 2008, 35(8):158-160.

    Google Scholar

    [9] 郭伟, 付瑞英, 赵仁鑫, 等.内蒙古包头白云鄂博矿区及尾矿区周围土壤稀土污染现状和分布特征[J].环境科学, 2013, 34(5):1895-1900.

    Google Scholar

    Guo W, Fu R Y, Zhao R X, et al.Distribution characteristics and current situation of soil rare earth contamination in the Bayan Obo mining area and Baotou tailing reservoir in Inner Mongolia[J]. Environmental Science, 2013, 34(5):1895-1900.

    Google Scholar

    [10] 林晓芳, 张晓娥.白云鄂博尾矿坝土壤污染及稀土元素毒性研究现状[J].世界最新医学信息文摘, 2017, 17(52):87-88.

    Google Scholar

    Lin X F, Zhang X E.Research status of soil pollution of Bayan Obo tailings dam and rare earth elements toxicity[J]. World Latest Medicine Information, 2017, 17(52):87-88.

    Google Scholar

    [11] 高叶青, 丁彩琴, 任冬梅, 等.稀土元素富集对白云鄂博矿区8种常见藓类植物生长及其解剖结构特征的影响[J].西北植物学报, 2017, 37(1):23-31.

    Google Scholar

    Gao Y Q, Ding C Q, Ren D M, et al.Impacts of REEs enrichment on growth and anatomy of eight common mosses from Baiyun Obo[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(1):23-31.

    Google Scholar

    [12] 张楠, 徐铁民, 吴良英, 等.微波消解-电感耦合等离子体质谱法测定海泡石中的稀土素[J].岩矿测试, 2018, 37(6):644-649.

    Google Scholar

    Zhang N, Xu T M, Wu L Y, et al.Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6):644-649.

    Google Scholar

    [13] Liu Y, Diwu C R, Zhao Y, et al.Determination of trace and rare-earth elements in Chinese soil and clay reference materials by ICP-MS[J]. Chinese Journal of Geochemistry, 2014, 33(1):95-102. doi: 10.1007/s11631-014-0663-5

    CrossRef Google Scholar

    [14] Masson P, Dalix T.Comparison of open digestion methods for the determination of rare earth elements in plant samples by ICP-MS[J]. Communications in Soil Science and Plant Analysis, 2016, 47(16):1866-1874.

    Google Scholar

    [15] 张茜, 余谦, 王剑, 等.应用ICP-MS研究川西南龙马溪组泥页岩稀土元素特征及沉积环境[J].岩矿测试, 2018, 37(2):217-224.

    Google Scholar

    Zhang Q, Yu Q, Wang J, et al.Application of ICP-MS to study the rare earth element characteristics and sedimentary environment of black shale in the Longmaxi Formation in the Southwestern Sichuan Basin[J]. Rock and Mineral Analysis, 2018, 37(2):217-224.

    Google Scholar

    [16] 黎卫亮, 程秀花, 李忠煜, 等.碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素[J].岩矿测试, 2017, 36(5):468-473.

    Google Scholar

    Li W L, Cheng X H, Li Z Y, et al.Determination of rare earth elements in peridotite by inductively coupled plasma-mass spectrometry after alkali fusion and Mg(OH)2 and Fe(OH)3 coprecipitation[J]. Rock and Mineral Analysis, 2017, 36(5):468-473.

    Google Scholar

    [17] 张磊, 周伟, 朱云, 等.硫酸铵溶液淋滤-电感耦合等离子体质谱测定离子相稀土分量的方法优化[J].岩矿测试, 2018, 37(5):518-525.

    Google Scholar

    Zhang L, Zhou W, Zhu Y, et al.An optimized method for determination of ionic-phase rare earth elements by ICP-MS using ammonium sulfate leaching[J]. Rock and Mineral Analysis, 2018, 37(5):518-525.

    Google Scholar

    [18] 汤少展, 任小荣, 邱海鸥, 等.电感耦合等离子体质谱法测定土壤中锗、镓和稀土[J].广州化工, 2018, 46(17):88-90.

    Google Scholar

    Tang S Z, Ren X R, Qiu H O, et al.Determination of Ge, Ga and rare earths in soil samples by inductively coupled plasma mass spectrometry[J]. Guangzhou Chemical Industry, 2018, 46(17):88-90.

    Google Scholar

    [19] 成学海, 夏传波, 郑建业, 等.封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素[J].岩矿测试, 2017, 36(3):231-238.

    Google Scholar

    Cheng X H, Xia C B, Zheng J Y, et al.Simultaneous determination of 29 trace elements in tourmaline by inductively coupled plasma-mass spectrometry with sealed press acid decomposition[J]. Rock and Mineral Analysis, 2017, 36(3):231-238.

    Google Scholar

    [20] 赵平, 李爱民, 刘建中, 等.应用ICP-MS研究黔西南地区构造蚀变体稀土元素地球化学特征[J].岩矿测试, 2017, 36(1):89-96.

    Google Scholar

    Zhao P, Li A M, Liu J Z, et al.Application of ICP-MS to study REE geochemistry of structure alteration rocks in Southwestern Guizhou Province, China[J]. Rock and Mineral Analysis, 2017, 36(1):89-96.

    Google Scholar

    [21] 张立锋, 刘杰民, 张翼明.电感耦合等离子体质谱法测定白云鄂博矿区土壤及植物中稀土总量[J].稀土, 2016, 27(4):106-112.

    Google Scholar

    Zhang L F, Liu J M, Zhang Y M.Determination of total rare earth in soil and plants in Bayan Obo mining area by inductively coupled plasma mass spectrometry[J]. Chinese Rare Earths, 2016, 27(4):106-112.

    Google Scholar

    [22] 陈筱钰.化学分析检验的质量控制研究[J].山西化工, 2019, 39(1):83-85.

    Google Scholar

    Chen X Y.Study on quality control of chemical analysis and inspection[J]. Shanxi Chemical Industry, 2019, 39(1):83-85.

    Google Scholar

    [23] 黄粮山.化学分析实验室检测结果的质量控制[J].云南化工, 2018, 45(2):86-87.

    Google Scholar

    Huang L S.Chemical analysis laboratory test results quality control[J]. Yunnan Chemical Technology, 2018, 45(2):86-87.

    Google Scholar

    [24] 许鹏.化学分析实验室日常测试结果的质量控制[J].化工设计通讯, 2017, 43(6):208.

    Google Scholar

    Xu P.Chemical analysis laboratory quality control of daily test results[J]. Chemical Engineering Design Communications, 2017, 43(6):208.

    Google Scholar

    [25] 蔡敬怡, 谭科艳, 路国慧, 等.贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征[J].岩矿测试, 2019, 38(3):305-315.

    Google Scholar

    Cai J Y, Tan K Y, Lu G H, et al.The spatial distribution characteristics of heavy metals in river sediments and suspended matter in small tributaries of the abandoned Wanshan mercury mines, Guizhou Province[J]. Rock and Mineral Analysis, 2019, 38(3):305-315.

    Google Scholar

    [26] 张庆辉, 刘兴旺, 程莉, 等.包头市南郊污灌区农田表层土壤轻稀土平面空间分布特征[J].天津农业科学, 2015, 21(7):39-47.

    Google Scholar

    Zhang Q H, Liu X W, Cheng L, et al.Distribution of farmland surface soil lanthanum in two-dimensional space of sewage irrigation area in thesouthern suburbs of Baotou[J]. Tianjin Agricultural Sciences, 2015, 21(7):39-47.

    Google Scholar

    [27] 王学锋, 许春雪, 顾雪, 等.典型稀土矿区周边土壤中稀土元素含量及赋存形态研究[J].岩矿测试, 2019, 38(2):137-146.

    Google Scholar

    Wang X F, Xu C X, Gu X, et al.Concentration and fractionation of rare earth elements in soils surrounding rare earth ore area[J]. Rock and Mineral Analysis, 2019, 38(2):137-146.

    Google Scholar

    [28] 肖涵, 鲁翼岚, 缪德仁.云南凤庆典型茶园土壤中稀土元素的含量及形态分布[J].昆明学院学报, 2019, 41(3):48-51.

    Google Scholar

    Xiao H, Lu Y L, Miao D R.Concentrations and speciation distributions of rare earth elements in typical tea garden soil in Fengqing County of Yunnan[J]. Journal of Kunming University, 2019, 41(3):48-51.

    Google Scholar

    [29] 张臻悦, 何正艳, 徐志高, 等.中国稀土矿稀土配分特征[J].稀土, 2016, 37(1):121-127.

    Google Scholar

    Zhang Z Y, He Z Y, Xu Z G, et al.Rare earth partitioning characteristics of China rare earth ore[J]. Chinese Rare Earths, 2016, 37(1):121-127.

    Google Scholar

    [30] 袁丽娟, 郭孝培, 魏益华, 等.赣南典型稀土矿区周边土壤和动植物产品中稀土元素组成特征及其健康风险评价[J].环境化学, 2019, 38(8):1-14.

    Google Scholar

    Yuan L J, Guo X P, Wei Y H, et al.Comppositions and health risk assessment of rare-earth elements in soil, animal and plant products around rare earth mining area in Southern Jiangxi Province[J]. Environmental Chemistry, 2019, 38(8):1-14.

    Google Scholar

    [31] 姚清华, 颜孙安, 张炳铃, 等.茶园土壤类型对铁观音茶叶稀土元素分布和组成的影响[J].热带亚热带植物学报, 2018, 26(6):644-650.

    Google Scholar

    Yao Q H, Yan S A, Zhang B L, et al.Effects of soil types in tea garden on distribution and composition of rare earth elements in Tieguanyin[J]. Journal of Tropical and Subtropical Botany, 2018, 26(6):644-650.

    Google Scholar

    [32] 杜召梅.稀土元素的环境效应及其污染土壤的修复措施[J].山东工, 2017, 46(14):197-199.

    Google Scholar

    Du Z M.Environmental effects and remediation measures for contaminated soils by rear earth elements[J]. Shandong Chemical Industry, 2017, 46(14):197-199.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(3510) PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint