Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 2
Article Contents

Guo-yun YANG, Pei-ying TANG, Jie ZHANG, Da-chuan ZHAN, Sheng QIN, Yu-shan HE. Determination of Boron, Iodine, Tin and Germanium in Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055
Citation: Guo-yun YANG, Pei-ying TANG, Jie ZHANG, Da-chuan ZHAN, Sheng QIN, Yu-shan HE. Determination of Boron, Iodine, Tin and Germanium in Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055

Determination of Boron, Iodine, Tin and Germanium in Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry

  • BACKGROUNDIn the multi-objective method, the analysis of four elements of boron, iodine, tin and germanium involves three supporting methods. Boron and tin were determined by Emission Spectrometry, germanium was determined by Atomic Fluorescence Spectrometry, and iodine was determined by Spectrophotometry or Inductively Coupled Plasma-Mass Spectrometry. The analysis cost is high and the detection efficiency is low. OBJECTIVESTo establish an easy, highly efficient and precise, low-cost method for determination of boron, iodine, tin and germanium in geochemical samples by Inductively Coupled Plasma-Mass Spectrometry. METHODSThe sample is fused with sodium peroxide to completely decompose the refractory element tin. The molten salt is extracted by water and the internal standard is added, and then the cation exchange resin is used to separate a large amount of sodium salt and most of the cations, ensuring that the salt meets the requirements of mass spectrometry analysis. RESULTSThe element detection limits were 0.92μg/g, 0.10μg/g, 0.29μg/g, 0.09μg/g for boron, iodine, tin and germanium, respectively. The relative standard deviation (RSD, n=12) was smaller than 5%. The method was verified by certified reference materials, and the measured values were consistent with the certified values. CONCLUSIONSThe method is suitable for the determination of boron, iodine, tin and germanium in batch geochemical samples.
  • 加载中
  • [1] 程素敏, 王娟, 张岩, 等.分光光度法测定土壤中碘的方法改进[J].中国无机分析化学, 2015, 5(4):41-43. doi: 10.3969/j.issn.2095-1035.2015.04.009

    CrossRef Google Scholar

    Cheng S M, Wang J, Zhang Y, et al.Method improvement on the determination of iodine in soil by ectrophotometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4):41-43. doi: 10.3969/j.issn.2095-1035.2015.04.009

    CrossRef Google Scholar

    [2] 张文华, 王彦东, 吴冬梅, 等.交流电弧直读光谱法快速测定地球化学样品中的银、锡、硼、钼、铅[J].中国无机分析化学, 2013, 3(4):16-19.

    Google Scholar

    Zhang W H, Wang Y D, Wu D M, et al.Rapid determination of silver, tin, boron, molybdenum and lead in geochemical samples by AC Arc direct-reading spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(4):16-19.

    Google Scholar

    [3] 黄辉, 李本涛, 李颖, 等.ICP-AES法测定低合金钢中的微量硼[J].化学分析计量, 2016, 25(1):47-49. doi: 10.3969/j.issn.1008-6145.2016.01.013

    CrossRef Google Scholar

    Huang H, Li B T, Li Y, et al.Determination of trace boron in low-alloy steel by inductively coupled plasma atomic emission spectrometry[J].Chemical Analysis and Meterage, 2016, 25(1):47-49. doi: 10.3969/j.issn.1008-6145.2016.01.013

    CrossRef Google Scholar

    [4] 宋伟娇, 代世峰, 赵蕾, 等.微波消解-电感耦合等离子体质谱法测定煤中的硼[J].岩矿测试, 2014, 33(3):327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007

    CrossRef Google Scholar

    Song W J, Dai S F, Zhao L, et al.Determination of boron in coal samples with microwave digestion by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(3):327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007

    CrossRef Google Scholar

    [5] 池卫廷.硼测定方法的研究现状[J].职业与健康, 2010, 26(3):335-338.

    Google Scholar

    Chi W T.Study status of boron determination[J].Occupation and Health, 2010, 26(3):335-338.

    Google Scholar

    [6] 赵峰, 李瑞仙, 祝建国, 等.氢化物发生-原子荧光光度法直接测定环境土壤中的痕量锗[J].分析测试技术与仪器, 2011, 17(1):56-58. doi: 10.3969/j.issn.1006-3757.2011.01.012

    CrossRef Google Scholar

    Zhao F, Li R X, Zhu J G, et al.Direct determination of trace germanium in environmental soil by atomic fluorescence spectrometry[J].Analysis and Testing Technology and Instruments, 2011, 17(1):56-58. doi: 10.3969/j.issn.1006-3757.2011.01.012

    CrossRef Google Scholar

    [7] 杨佳, 薛瑞, 张超.氢化物发生-原子荧光光谱法测定铀矿石中的锗元素[J].中国无机分析化学, 2016, 6(2):16-19. doi: 10.3969/j.issn.2095-1035.2016.02.005

    CrossRef Google Scholar

    Yang J, Xue R, Zhang C.Determination of germanium in uranium ores by hydride-generation atomic fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(2):16-19. doi: 10.3969/j.issn.2095-1035.2016.02.005

    CrossRef Google Scholar

    [8] 陈波, 刘洪青, 邢应香.电感耦合等离子体质谱法同时测定地质样品中锗硒碲[J].岩矿测试, 2014, 33(2):192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006

    CrossRef Google Scholar

    Chen B, Liu H Q, Xing Y X.Simultaneous determination of Ge, Se and Te in geological samples by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(2):192-196. doi: 10.3969/j.issn.0254-5357.2014.02.006

    CrossRef Google Scholar

    [9] 何红蓼, 李冰, 韩丽荣, 等.封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J].分析试验室, 2002, 21(5):8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004

    CrossRef Google Scholar

    He H L, Li B, Han L R, et al.Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICPMS[J].Chinese Journal of Analysis Laboratory, 2002, 21(5):8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(4)

Article Metrics

Article views(1159) PDF downloads(174) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint