Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 2
Article Contents

Yu-feng CHEN, Xiu-li ZHENG, Jing LI, Xing-liang HE, Chang-ling LIU, Qing-guo MENG, De-di QIN, Pei-yu ZHANG. Study on Oxidation Rate and Isotope Fractionation of Methane in Bohai Sea Sediments[J]. Rock and Mineral Analysis, 2018, 37(2): 164-174. doi: 10.15898/j.cnki.11-2131/td.201707100117
Citation: Yu-feng CHEN, Xiu-li ZHENG, Jing LI, Xing-liang HE, Chang-ling LIU, Qing-guo MENG, De-di QIN, Pei-yu ZHANG. Study on Oxidation Rate and Isotope Fractionation of Methane in Bohai Sea Sediments[J]. Rock and Mineral Analysis, 2018, 37(2): 164-174. doi: 10.15898/j.cnki.11-2131/td.201707100117

Study on Oxidation Rate and Isotope Fractionation of Methane in Bohai Sea Sediments

More Information
  • BACKGROUND The Bohai Sea contains a large amount of oil and gas, the main component of which is methane. The influence of natural or human factors will cause its leakage and migration and then have a negative impact on the environment. However, most of the methane would be oxidized by microorganisms during the leakage and migration processes. Meanwhile, the different environmental conditions will affect oxidation rate and carbon isotope fractionation of methane. OBJECTIVE In order to better understand the law of isotope fractionation and methane oxidization in the sediments and to provide reference for further related research in this area, the Bohai Sea sediments were selected as laboratory raw materials for the degradation of laboratory experiments and are described in this paper. METHODS Gas Chromatography and Gas Chromatography-Isotope Ratio Mass Spectrometry were used to determine the methane oxidation rate, and the carbon isotope fractionation coefficient ε of methane was determined. RESULTS The results show that the aerobic oxidation of methane is dominant. Oxidation temperature and gas flow rate are the main factors affecting the rate of methane oxidation. In the mode of continuous incubation, when the temperature reduced from 28℃ to 15℃, the average oxidation rate reduced by 60%±10%, indicating that the lower temperature is not helpful for methane oxidation. When the gas flow rate increases from 50 to 150 μL/min, the average oxidation rate of methane increases by 90%±10%. This indicates that the higher gas flow rate is favorable to the increase of oxidation rate. It is also found that the fractionation effect of carbon and hydrogen isotopes are mainly affected by temperature where the fractionation degree is positively correlated with temperature. CONCLUSIONS Temperature is an important factor affecting methane oxidation rate and isotopic fractionation.
  • 加载中
  • [1] Asadieh B, Krakauer N Y.Global trends in extreme precipitation:Climate models versus observations[J].Hydrology & Earth System Sciences Discussions, 2014, 11(11):11369-11393.

    Google Scholar

    [2] Cai W J, Borlace S, Lengaigne M, et al.Increasing frequency of extreme Elnino events due to greenhouse warming[J].Nature Climate Change, 2014, 4(2):111-116. doi: 10.1038/nclimate2100

    CrossRef Google Scholar

    [3] Solomon S, Qin D, Manning M, et al. Summary for Poli-cymakers Climate Change 2007: The Physical Dcience Basis[R]. 2007.

    Google Scholar

    [4] Judd A G, Hovland M, Dimitrov L I, et al.The geological methane budget at continental margins and its influence on climate change[J].Geofluids, 2010, 2(2):109-126.

    Google Scholar

    [5] 李广之, 汪林自.吸附态轻烃的解吸与分析[J].物探与化探, 2000, 24(1):34-42.

    Google Scholar

    Li G Z, Wang L Z.The desorption, analysis and application of adsorbed light hydrocarbon[J].Geophysical & Geochemical Exploration, 2000, 24(1):34-42.

    Google Scholar

    [6] Wang W, Wang L, Shao Z.Diversity and abundance of oil-degrading bacteria and alkane hydroxylase genes in the subtropical seawater of Xiamen Island[J].Microbial Ecology, 2010, 60(2):429-439. doi: 10.1007/s00248-010-9724-4

    CrossRef Google Scholar

    [7] Rasheed M A, Prasanna M V, Kumar T S, et al.Geo-microbial prospecting method for hydrocarbon exploration in Vengannapalli Village, Cuddapah Basin, India[J].Current Science, 2008, 95(3):361-366.

    Google Scholar

    [8] Martens C S, Berner R A.Methane production in the interstitial waters of sulfate depleted marine sediments[J].Science, 1974, 185(4157):1167. doi: 10.1126/science.185.4157.1167

    CrossRef Google Scholar

    [9] Knittel K, Boetius A.Anaerobic oxidation of methane:Progress with an unknown process[J].Annual Review of Microbiology, 2009, 63(63):311.

    Google Scholar

    [10] Wegener G, Boetius A.An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes[J].Biogeosciences, 2009, 6(5):867-876. doi: 10.5194/bg-6-867-2009

    CrossRef Google Scholar

    [11] Kinnaman F S, Valentine D L, Tyler S C.Carbon and hy-drogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane[J].Geochimica Cosmochimica Acta, 2007, 71(2):271-283. doi: 10.1016/j.gca.2006.09.007

    CrossRef Google Scholar

    [12] Redmond M C, Valentine D L, Sessions A L.Iden-tification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing[J].Applied & Environmental Microbiology, 2010, 76(19):6412-6422.

    Google Scholar

    [13] 吴自军, 任德章, 周怀阳.海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J].地球科学进展, 2013, 28(7):765-773. doi: 10.11867/j.issn.1001-8166.2013.07.0765

    CrossRef Google Scholar

    Wu Z J, Ren D Z, Zhou H Y.Anaerobic oxidation of methane (AOM) and its influence on inorganic sulfur cycle in marine sediments[J].Advances in Earth Science, 2013, 28(7):765-773. doi: 10.11867/j.issn.1001-8166.2013.07.0765

    CrossRef Google Scholar

    [14] Wegener G. Methane Oxidation and Carbon Assimilation in Marine Sediments[R]. University of Bremen, 2008: 1-153.https://www.researchgate.net/publication/27336283_Methane_Oxidation_and_Carbon_Assimilation_in_Marine_Sediments

    Google Scholar

    [15] Blees H J R. Methane Oxidation and Emission in Lake Lugano (Southern Switzerland): A Lipid Biomarker and Isotopic Approach[R]. 2015.

    Google Scholar

    [16] Yoshioka H, Maruyama A, Nakamura T, et al.Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin[J].Geobiology, 2010, 8(3):223-233. doi: 10.1111/gbi.2010.8.issue-3

    CrossRef Google Scholar

    [17] Knittel K, Lösekann T, Boetius A, et al.Diversity and distribution of methanotrophic archaea at cold seeps[J].Applied and Environmental Microbiology, 2005, 71(1):467-479. doi: 10.1128/AEM.71.1.467-479.2005

    CrossRef Google Scholar

    [18] 刘涛, 郑国东, 潘永信, 等.地质微生物对海洋天然气水合物的影响[J].天然气地球科学, 2009, 20(6):992-999.

    Google Scholar

    Liu T, Zheng G D, Pan Y X, et al.Influence of geo-microbes on the formation of marine gas hydrates[J].Natural Gas Geoscience, 2009, 20(6):992-999.

    Google Scholar

    [19] Reed D W, Fujita Y, Delwiche M E, et al.Microbial communities from methane hydrate-bearing deep marine sediments in a Forearc Basin[J].Applied and Environmental Microbiology, 2002, 68(8):3759-3770. doi: 10.1128/AEM.68.8.3759-3770.2002

    CrossRef Google Scholar

    [20] 金文标, 姚建军, 陈孟晋, 等.天然气微生物勘探指示菌的筛选[J].天然气工业, 2002, 22(5):20-22.

    Google Scholar

    Jin W B, Yao J J, Chen M J, et al.Screening of microbial exploration indicators for natural gas[J].Natural Gas Industry, 2002, 22(5):20-22.

    Google Scholar

    [21] 胡国全, 张辉, 邓宇, 等.微生物法在油气勘探中的应用研究[J].应用与环境微生物学报, 2006, 12(6):824-827.

    Google Scholar

    Hu G Q, Zhang H, Deng Y, et al.Application of microbial technique in prospection for oil and gas[J].Chinese Journal of Applied and Environmental Biology, 2006, 12(6):824-827.

    Google Scholar

    [22] 贺行良, 王江涛, 刘昌岭, 等.天然气水合物客体分子与同位素组成特征及其地球化学应用[J].海洋地质与第四纪地质, 2012, 32(3):163-174.

    Google Scholar

    He X L, Wang J T, Liu C L, et al.Guest molecular and isotopic compositions of natural gas hydrates and its geochemical applications[J].Marine Geology & Quaternary Geology, 2012, 32(3):163-174.

    Google Scholar

    [23] Kleindienst S, Herbst F A, Stagars M, et al.Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps[J]. The ISME Journal, 2014, 8(10):2029-2044. doi: 10.1038/ismej.2014.51

    CrossRef Google Scholar

    [24] 韩冰. 甲烷氧化菌的微生态解析及其应用基础研究[D]. 北京: 清华大学, 2008.

    Google Scholar

    Han B. Molecular Ecology Study on Methanotrophs and Fundamental Research on the Applications of Methanotrophs[D]. Beijing: Tsinghua University, 2008.

    Google Scholar

    [25] 陈立雷, 李双林, 赵青芳, 等.海洋油气微生物好氧降解轻烃模拟试验[J].海洋环境科学, 2013, 32(6):922-925.

    Google Scholar

    Chen L L, Li S L, Zhao Q F, et al.Simulating test of aerobic marine oil and gas microbial degradation of light hydrocarbons[J].Marine Environmental Science, 2013, 32(6):922-925.

    Google Scholar

    [26] 贺行良, 夏宁, 刘昌岭, 等.FID/TCD并联气相色谱法测定天然气水合物的气体组成[J].分析测试学报, 2012, 31(2):206-210.

    Google Scholar

    He X L, Xia N, Liu C L, et al.Compositional analysis of gases in natural gas hydrates by GC-FID/TCD[J].Journal of Instrumental Analysis, 2012, 31(2):206-210.

    Google Scholar

    [27] 贺行良, 刘昌岭, 王江涛, 等.气相色谱-同位素比值质谱法测定天然气水合物气体单体碳氢同位素[J].岩矿测试, 2012, 31(1):154-158.

    Google Scholar

    He X L, Liu C L, Wang J T, et al.Measurement of carbon and hydrogen isotopes of natural gas hydrate-bound gases by gas chromatography-isotope ratio mass spectrometry[J].Rock and Mineral Analysis, 2012, 31(1):154-158.

    Google Scholar

    [28] Mariotti A, Germon J C, Hubert P, et al.Experimental determination of nitrogen kinetic isotope fractionation:Some principles; illustration for the denitrification and nitrification processes[J].Plant and Soil, 1981, 62(3):413-430. doi: 10.1007/BF02374138

    CrossRef Google Scholar

    [29] Chu K H, Mahendra S, Song D L, et al.Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes[J].Environmental Science & Technology, 2004, 38(11):3126.

    Google Scholar

    [30] 陈立雷, 贺行良, 赵青芳, 等.轻烃在海洋沉积物中的吸附与解吸行为研究[J].天然气地球科学, 2013, 24(4):798-802.

    Google Scholar

    Chen L L, He X L, Zhao Q F, et al.Experimental research on the behavior of the absorption and desorption of light hydrocarbons in marine sediments[J].Natural Gas Geoscience, 2013, 24(4):798-802.

    Google Scholar

    [31] 陈义兰, 吴永亭, 刘晓瑜, 等.渤海海底地形特征[J].海洋科学进展, 2013, 31(1):75-82.

    Google Scholar

    Chen Y L, Wu Y T, Liu X Y, et al.Features of seafloor topography in the Bohai Sea[J].Advances in Marine Science, 2013, 31(1):75-82.

    Google Scholar

    [32] 唐玉斌, 孙常宇, 陈芳艳, 等.一株艹屈高效降解菌的分离鉴定及其降解特性[J].微生物学通报, 2009, 36(4):593-597.

    Google Scholar

    Tang Y B, Sun C Y, Chen F Y, et al.Isolation and identification of a chrysene-degrading strain and its degradation characteristics[J].Microbiology, 2009, 36(4):593-597.

    Google Scholar

    [33] Nesbit S P, Breitenbeck G A.A laboratory study of factors influencing methane uptake by soils[J].Agriculture Ecosystems & Environment, 1992, 41(1):39-54.

    Google Scholar

    [34] 贺行良, 刘昌岭, 王江涛, 等.天然气水合物气体组成分析技术[J].海洋地质前沿, 2011, 27(6):65-73.

    Google Scholar

    He X L, Liu C L, Wang J T, et al.An overview of analytical techniques for composition of hydrates-bound gas[J].Marine Geology Frontiers, 2011, 27(6):65-73.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2098) PDF downloads(39) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint