Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 6
Article Contents

Zheng-qi XU, Xin-dong OUYANG, Cheng-jiang ZHANG, Jian YAO, Man TANG. Application of Electron Microprobe Chemical Dating to Datian Uraninite in Panzhihua and Its Significance[J]. Rock and Mineral Analysis, 2017, 36(6): 641-648. doi: 10.15898/j.cnki.11-2131/td.201704280071
Citation: Zheng-qi XU, Xin-dong OUYANG, Cheng-jiang ZHANG, Jian YAO, Man TANG. Application of Electron Microprobe Chemical Dating to Datian Uraninite in Panzhihua and Its Significance[J]. Rock and Mineral Analysis, 2017, 36(6): 641-648. doi: 10.15898/j.cnki.11-2131/td.201704280071

Application of Electron Microprobe Chemical Dating to Datian Uraninite in Panzhihua and Its Significance

  • As the main industrial uranium minerals in hydrothermal uranium deposits, uraninite and pitchblende are of great significance in the study of ore genesis and metallogenic regularity of hydrothermal uranium deposits. The Datian area in Panzhihua is one of the important areas of migmatite type hydrothermal uranium deposit in China. There is ultra-rich-uranium ore (U>10%) in rolling stone and the richer uranium-rich bedrock ore (U=0.1%-2%) where uraninite is the main uranium mineral. The study of the composition and forming age of two types of uraninite has important significance for metallogenic regularity of mixed rock type hydrothermal uranium deposits in the Datian area. In this study, mineralogical and Electron Microprobe analyses of uraninite in rolling stone and bedrock from the Datian area were carried out to determine the composition and age. Results show that the chemical compositions of uraninite in rolling stone and bedrock are similar except Pb contents with UO2 contents of 77.36%-84.04%, ThO2 contents of 0.98%-5.59%, and PbO contents of 1.79%-8.8%. Lead contents of uraninite in rolling stone are lower than those of uraninite in the bedrock, but thorium contents are contrary. Electron Microprobe chemical dating indicates that the uraninite in bedrock ore has ages of 774.9-785.5 Ma, whereas the uraninite in rolling stones has an age of 783.7 Ma. The dating results are consistent with traditional isotopic dating (775-777.6 Ma). The indicates that the uraninite in rolling stones and bedrock formed at the same time and the electronic probe in situ dating method is credible. In the late hydrothermal alteration, the uraninite experienced silicification, carbonization, and hematitization at 730.6 Ma, 699.8 Ma, and 664.0 Ma, respectively. This study provides evidences for the metallogenic epoch and mineralization process of the hydrothermal uranium deposits.
  • 加载中
  • [1] 葛祥坤. 电子探针定年技术在铀及含铀矿物测年中的开发与研究[D]. 北京: 核工业北京地质研究院, 2013.http://d.wanfangdata.com.cn/Thesis/D416449

    Google Scholar

    Ge X K.Research and Development of Electron Microprobe Dating on Uranium Minerals and U-bearing Minerals[D].Beijing:Beijing Research Institute of Uranium Geology, 2013.

    Google Scholar

    [2] 葛祥坤, 秦明宽, 范光.电子探针化学测年法在晶质铀矿-沥青铀矿定年研究中的应用现状[J].世界核地质科技, 2011, 28(1):55-62.

    Google Scholar

    Ge X K, Qin M K, Fan G.Review on the application of electron microprobe chemical dating method in the age research of uraninite/pitchblende[J].World Nuclear Geoscience, 2011, 28(1):55-62.

    Google Scholar

    [3] 郭国林, 潘家永, 刘成东, 等.电子探针化学测年技术及其在地学中的应用[J].东华理工学院学报, 2005, 28(1):39-42.

    Google Scholar

    Guo G L, Pan J Y, Liu C D, et al.Chemical dating technique on the electron probe microanalysis and its application on earth science[J].Journal of East China Institute of Technology, 2005, 28(1):39-42.

    Google Scholar

    [4] 李学军, 郭涛, 王庆飞.电子探针化学测年方法[J].地学前缘, 2003, 10(2):411-414.

    Google Scholar

    Li X J, Guo T, Wang Q F.Electron microprobe chemical dating technique[J].Earth Science Frontiers, 2003, 10(2):411-414.

    Google Scholar

    [5] Schulz B, Schüssler U.Electron-microprobe Th-U-Pb monazite dating in Early-Palaeozoic high-grade gneisses as a completion of U-Pb isotopic ages (Wilson Terrane, Antarctica)[J].Lithos, 2013(175-176):178-192.

    Google Scholar

    [6] Kempe U.Precise electron microprobe age determination in altered uraninite:Consequences on the intrusion age and the metallogenic significance of Kirchberg Granite (Erzgebirge, Germany)[J].Contributions to Mineralogy and Petrology, 2003, 145(1):107-118. doi: 10.1007/s00410-002-0439-5

    CrossRef Google Scholar

    [7] 张龙, 陈振宇, 田泽瑾, 等.粤北产铀与不产铀花岗岩中铀矿物特征的电子探针研究及其找矿意义[J].岩矿测试, 2016, 35(3):310-319.

    Google Scholar

    Zhang L, Chen Z Y, Tian Z J, et al.EPMA study on characteristics of uranium minerals in uranium-bearing and uranium-barren granites in Northern Guangdong and its prospecting significance[J].Rock and Mineral Analysis, 2016, 35(3):310-319.

    Google Scholar

    [8] 张龙, 陈振宇, 田泽瑾, 等.电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J].岩矿测试, 2016, 35(1):98-107.

    Google Scholar

    Zhang L, Chen Z Y, Tian Z J, et al.The application of electron microprobe dating method on uranium minerals in Changjiang Granite, Northern Guangdong[J].Rock and Mineral Analysis, 2016, 35(1):98-107.

    Google Scholar

    [9] 黄广文, 潘家永, 张占峰, 等.应用电子探针研究蒙其古尔铀矿床含矿砂岩岩石学特征及铀矿物分布规律[J].岩矿测试, 2017, 36(2):209-220.

    Google Scholar

    Huang G W, Pan J Y, Zhang Z F, et al.Study on petrological characteristics and distribution of uranium minerals of sandstones in Mengqiuer uranium deposit by electron microprobe, Xinjiang[J].Rock and Mineral Analysis, 2017, 36(2):209-220.

    Google Scholar

    [10] 张昭明.电子探针在测定晶质铀矿年龄中的应用[J].放射性地质, 1982(5):408-411.

    Google Scholar

    Zhang Z M.The application of electron microprobe on dating uraninite[J].Radioactive Geology, 1982(5):408-411.

    Google Scholar

    [11] 张成江, 陈友良, 李巨初, 等.康滇地轴巨粒晶质铀矿的发现及其地质意义[J].地质通报, 2015, 34(12):2219-2226. doi: 10.3969/j.issn.1671-2552.2015.12.008

    CrossRef Google Scholar

    Zhang C J, Chen Y L, Li J C, et al.The discovery of coarse-grained uraninite in Kangdian Axis and its geological significane[J].Geological Bulletin of China, 2015, 34(12):2219-2226. doi: 10.3969/j.issn.1671-2552.2015.12.008

    CrossRef Google Scholar

    [12] 徐争启, 张成江, 陈友良, 等.攀枝花大田含铀滚石特征及其意义[J].矿物学报, 2015(增刊):357.

    Google Scholar

    Xu Z Q, Zhang C J, Chen Y L, et al.The characteristics and significance of uranium bearing rolling stones in Panzhihua Datian[J].Acta Mineralogica Sinica, 2015(Supplement):357.

    Google Scholar

    [13] 姚建. 攀枝花市大田地区混合岩成因研究[D]. 成都: 成都理工大学, 2014.http://d.wanfangdata.com.cn/Thesis/Y2580274

    Google Scholar

    Yao J.The Origin of the Migmatite Complex in Datian Area, Panzhihua City[D].Chengdu:Chengdu University of Technology, 2014.

    Google Scholar

    [14] 姚建, 李巨初, 周君, 等. 攀枝花市大田505地区混合岩成因及其与铀矿化关系初探[C]//全国铀矿大基地建设学术研讨会论文集(上). 2012: 590-598.

    Google Scholar

    Yao J, Li J C, Zhou J, et al.The Genesis of Migmatite Complexes and the Relationship between Migmatite and Uranium Mineralization, Area 505 of Datian, Panzhihua City[C]//Proceedings of National Conference on Uranium Big Base Construction, 2012:590-598.

    Google Scholar

    [15] Bowles J F W.Age dating of individual grains of uran-inite in rocks from electron microprobe analyses[J].Chemical Geology, 1990, 83(1-2):47-53. doi: 10.1016/0009-2541(90)90139-X

    CrossRef Google Scholar

    [16] 韦龙明, 王莉, 张广辉, 等.广东石人嶂钨矿床中的晶质铀矿研究[J].地质学报, 2014, 88(4):805-813.

    Google Scholar

    Wei L M, Wang L, Zhang G H, et al.Study on the uraninite in Shirenzhang tungten deposit, Guangdong Province[J]. Acta Geologica Sinica, 2014, 88(4):805-813.

    Google Scholar

    [17] Alexandre P, Kyser T K.Effects of cationic substitutions and alteration in uraninite, and implications for the dating of uranium deposits[J].Canadian Mineralogist, 2005, 43(3):1005-1017. doi: 10.2113/gscanmin.43.3.1005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(1426) PDF downloads(28) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint