Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 6
Article Contents

Yu WANG, Li-hua WANG, Jian-qiang WANG, Zheng JIANG, Chan JIN, Yan-fei WANG. Investigation of Organic Matter Pore Structures of Shale in Three Dimensions of Shale Using Nano-X-ray Microscopy[J]. Rock and Mineral Analysis, 2017, 36(6): 563-573. doi: 10.15898/j.cnki.11-2131/td.201703240038
Citation: Yu WANG, Li-hua WANG, Jian-qiang WANG, Zheng JIANG, Chan JIN, Yan-fei WANG. Investigation of Organic Matter Pore Structures of Shale in Three Dimensions of Shale Using Nano-X-ray Microscopy[J]. Rock and Mineral Analysis, 2017, 36(6): 563-573. doi: 10.15898/j.cnki.11-2131/td.201703240038

Investigation of Organic Matter Pore Structures of Shale in Three Dimensions of Shale Using Nano-X-ray Microscopy

More Information
  • Three dimensional (3D) structures of nanometer scale pores is a determining factor for the shale gas micro-seepage mechanism, and it is a critical issue needing to be solved urgently to develop a better model for the description of flow behavior in shale. In this study, 3D structure of the OM pores of the Longmaxi formation shale sample (Φ=7 μm) from the Sichuan basin was rebuilt using synchrontron radiation CT and experimental CT respectively. The purpose of the study was to compare the pore structural parameters obtained from the radiation CT and experimental CT. The results indicate:(1) The OM pores, with a porosity of about 60%, exhibit a honeycomb pattern and good connectivity. The pore size distribution exhibits a bimodal pattern, mainly concentrating in 60-150 nm and 500-1400 nm, and pores with diameters larger than 500 nm contribute the most to the total porosity. (2) The porosity and the total pore number obtained from synchrontron radiation CT and experimental CT remain consistent within the accepted margin of error, but the total throat number and throat diameters obtained from the second method above suggest a relatively large difference. Although the pore size distribution and coordination number distribution laws are similar, there are obvious deviations considering the exact figures. (3) For 3D characterization of shale pore structures using nanometer CT, there are problems of threshold partition and small scan view. The problems can be reduced by three plans starting with reconstruction algorithm, 3D data analysis and REV.
  • 加载中
  • [1] Loucks R G, Reed R M, Ruppel S C, et al.Spectrum of pore types for matrix-related mud pores[J].AAPG Bulletin, 2012, 96(6):1071-1098. doi: 10.1306/08171111061

    CrossRef Google Scholar

    [2] Pommer M, Milliken K.Pore types and pore-size distri-butions across thermal maturity, Eagle Ford formation, Southern Texas[J].AAPG Bulletin, 2015, 99(9):1713-1744. doi: 10.1306/03051514151

    CrossRef Google Scholar

    [3] 邹才能, 朱如凯, 白斌, 等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报, 2011, 27(6):1857-1864.

    Google Scholar

    Zou C N, Zhu R K, Bai B, et al.First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J].Acta Petrologica Sinica, 2011, 27(6):1857-1864.

    Google Scholar

    [4] 张东晓, 杨婷云, 吴天昊, 等.页岩气开发机理和关键问题[J].科学通报, 2016, 61(1):62-71.

    Google Scholar

    Zhang D X, Yang T Y, Wu T H, et al.Recovery mechanisms and key issues in shale gas development[J].Chinese Science Bulletin, 2016, 61(1):62-71.

    Google Scholar

    [5] 徐祖新, 郭少斌.基于NMR和X-CT的页岩储层孔隙结构研究[J].地球科学进展, 2014, 29(5):624-631. doi: 10.11867/j.issn.1001-8166.2014.05.0624

    CrossRef Google Scholar

    Xu Z X, Guo S B.Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J].Advances in Earth Science, 2014, 29(5):624-631. doi: 10.11867/j.issn.1001-8166.2014.05.0624

    CrossRef Google Scholar

    [6] 吴松涛, 朱如凯, 崔京钢, 等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J].石油勘探与开发, 2015, 42(2):167-176. doi: 10.11698/PED.2015.02.05

    CrossRef Google Scholar

    Wu S T, Zhu R K, Cui J G, et al.Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J].Petroleum Exploration and Development, 2015, 42(2):167-176. doi: 10.11698/PED.2015.02.05

    CrossRef Google Scholar

    [7] 马勇, 钟宁宁, 程礼军, 等.渝东南两套富有机质页岩的孔隙结构特征——来自FIB-SEM的新启示[J].石油实验地质, 2015, 37(1):109-116. doi: 10.11781/sysydz201501109

    CrossRef Google Scholar

    Ma Y, Zhong N N, Cheng L J, et al.Pore structure of two organic-rich shales in Southeastern Chongqing area:Insight from focused ion beam scanning electron microscope (FIB-SEM)[J].Petroleum Geology & Experiment, 2015, 37(1):109-116. doi: 10.11781/sysydz201501109

    CrossRef Google Scholar

    [8] 黄家国, 许开明, 郭少斌, 等.基于SEM、NMR和X-CT的页岩储层孔隙结构综合研究[J].现代地质, 2015, 29(1):198-205.

    Google Scholar

    Huang J G, Xu K M, Guo S B, et al.Comprehensive study on pore structures of shale reservoirs based on SEM, NMR and X-CT[J].Geoscience, 2015, 29(1):198-205.

    Google Scholar

    [9] Curtis M E, Sondergeld C H, Ambrose R J, et al.Micro-structural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J].AAPG Bulletin, 2012, 96(4):665-677. doi: 10.1306/08151110188

    CrossRef Google Scholar

    [10] Wang Y, Pu J, Wang L, et al.Characterization of typical 3D pore networks of Jiulaodong Formation shale using nano-transmission X-ray microscopy[J].Fuel, 2016, 170:84-91. doi: 10.1016/j.fuel.2015.11.086

    CrossRef Google Scholar

    [11] Misch D, Mendez-Martin F, Hawranek G, et al.SEM and FIB-SEM investigations on potential gas shales in the Dniepr-Donets Basin (Ukraine):Pore space evolution in organic matter during thermal maturation[J].IOP Conference Series:Materials Science and Engineering, 2016, 109(012010).doi:10.1088/1757-899X/109/1/012010.

    CrossRef Google Scholar

    [12] Ma L, Taylor K G, Lee P D, et al.Novel 3D centimetre-to nano-scale quantification of an organic-rich mudstone:The carboniferous Bowland shale, Northern England[J].Marine and Petroleum Geology, 2016, 72:193-205. doi: 10.1016/j.marpetgeo.2016.02.008

    CrossRef Google Scholar

    [13] Jiang F, Chen J, Xu Z, et al.Organic matter pore charac-terization in Lacustrine shales with variable maturity using nanometer-scale resolution X-ray computed tomography[J].Energy & Fuels, 2017, 31(3):2669-2680.

    Google Scholar

    [14] Zhang H, Zhu Y M, Wang Y, et al.Comparison of org-anic matter occurrence and organic nanopore structure within marine and terrestrial shale[J].Journal of Natural Gas Science and Engineering, 2016, 32:356-363. doi: 10.1016/j.jngse.2016.04.040

    CrossRef Google Scholar

    [15] Cao G, Lin M, Jiang W, et al.A 3D coupled model of organic matter and inorganic matrix for calculating the permeability of shale[J].Fuel, 2017, 204:129-143. doi: 10.1016/j.fuel.2017.05.052

    CrossRef Google Scholar

    [16] Loucks R G, Reed R M.Scanning-electron-microscope petrographic evidence for distinguishing organic matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J].Gulf Coast Association of Geological Societies Journal, 2014, 3:51-60.

    Google Scholar

    [17] Ko L T, Loucks R G, Ruppel S C, et al.Origin and cha-racterization of Eagle Ford pore networks in the South Texas Upper Cretaceous Shelf[J].AAPG Bulletin, 2017, 101(3):387-418. doi: 10.1306/08051616035

    CrossRef Google Scholar

    [18] 王羽, 金婵, 汪丽华, 等.应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J].岩矿测试, 2015, 34(3):278-285.

    Google Scholar

    Wang Y, Jin C, Wang L H, et al.Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J].Rock and Mineral Analysis, 2015, 34(3):278-285.

    Google Scholar

    [19] 王羽, 金婵, 姜政, 等.渝东五峰组-龙马溪组页岩矿物成分与孔隙特征分析[J].矿物学报, 2016, 36(4):555-562.

    Google Scholar

    Wang Y, Jin C, Jiang Z, et al.Mineral composition and microscopic pore characteristics of Wufeng-Longmaxi Formation shale in Eastern Chongqing City, China[J].Acta Geologica Sinica, 2016, 36(4):555-562.

    Google Scholar

    [20] Klaver J, Desbois G, Littke R, et al.BIB-SEM characteri-zation of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier shales[J].Marine and Petroleum Geology, 2015, 59:451-466. doi: 10.1016/j.marpetgeo.2014.09.020

    CrossRef Google Scholar

    [21] Klaver J, Desbois G, Littke R, et al.BIB-SEM pore char-acterization of mature and post mature Posidonia shale samples from the Hils area, Germany[J].International Journal of Coal Geology, 2016, 158:78-89. doi: 10.1016/j.coal.2016.03.003

    CrossRef Google Scholar

    [22] Zou C, Du J, Xu C, et al.Formation, distribution, resou-rce potential, and discovery of Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J].Petroleum Exploration and Development, 2014, 41(3):306-325. doi: 10.1016/S1876-3804(14)60036-7

    CrossRef Google Scholar

    [23] Hu H, Hao F, Lin J, et al.Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China[J].International Journal of Coal Geology, 2017, 173:40-50. doi: 10.1016/j.coal.2017.02.004

    CrossRef Google Scholar

    [24] Michael U, Dennis D, Jeffrey F, et al.Sample dimensions influence strength and crystal plasticity[J].Science, 2004, 305(5686):986-989. doi: 10.1126/science.1098993

    CrossRef Google Scholar

    [25] Song Y F, Chang C H, Liu C Y, et al.X-ray beamlines for structural studies at the NSRRC superconducting wavelength shifter[J].Journal of Synchrotron Radiation, 2007, 14(4):320-325. doi: 10.1107/S0909049507021516

    CrossRef Google Scholar

    [26] Kak A C, Slaney M, Wang G.Principles of computerized tomographic imaging[J].Medical Physics, 2002, 29(1):105-108. doi: 10.1118/1.1429627

    CrossRef Google Scholar

    [27] Oh W, Lindquist W B.Image thresholding by indicator Kriging[J].Ieee Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(7):590-602. doi: 10.1109/34.777370

    CrossRef Google Scholar

    [28] 王羽, 金婵, 汪丽华, 等.基于SEM图像灰度水平的页岩孔隙分割方法研究[J].岩矿测试, 2016, 35(6):35-41.

    Google Scholar

    Wang Y, Jin C, Wang L H, et al.Pore segmentation methods based on gray scale of SEM images[J].Rock and Mineral Analysis, 2016, 35(6):35-41.

    Google Scholar

    [29] Slatt R M, O'brien N R.Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin, 2011, 95(12):2017-2030. doi: 10.1306/03301110145

    CrossRef Google Scholar

    [30] Rabbani A, Baychev T G, Ayatollahi S, et al.Evolution of pore-scale morphology of oil shale during pyrolysis:A quantitative analysis[J].Transport in Porous Media, 2017, 119(1):143-162. doi: 10.1007/s11242-017-0877-1

    CrossRef Google Scholar

    [31] Chen Y Y, Mastalerz M, Schimmelmann A.heterogeneity of shale documented by micro-FTIR and image analysis[J].Journal of Microscopy, 2014, 256(3):177-189. doi: 10.1111/jmi.12169

    CrossRef Google Scholar

    [32] 王香增, 张丽霞, 高潮.鄂尔多斯盆地下寺湾地区延长组页岩气储层非均质性特征[J].地学前缘, 2016, 23(1):134-145.

    Google Scholar

    Wang X Z, Zhang L X, Gao C.The heterogeneity of lacustrine shale gas reservoir in Yanchang Formation, Xiasiwan area, Ordos Basin[J].Earth Science Frontiers, 2016, 23(1):134-145.

    Google Scholar

    [33] Wang Y, Luo S, Wang L, et al.Synchrotron radiation-based L1-norm regularization on micro-CT imaging in shale structure analysis[J].Journal of Inverse and Ill-posed Problems, 2017, 25(4):483-498.

    Google Scholar

    [34] Chen R, Dreossi D, Mancini L, et al.PITRE:Software for phase-sensitive X-ray image processing and tomography reconstruction[J].Journal of Synchrotron Radiation, 2012, 19(5):836-845. doi: 10.1107/S0909049512029731

    CrossRef Google Scholar

    [35] Gitman I M, Askes H, Sluys L J.Representative volume:Existence and size determination[J].Engineering Fracture Mechanics, 2007, 74(16):2518-2534. doi: 10.1016/j.engfracmech.2006.12.021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(3181) PDF downloads(70) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint