[1] |
Elburg M A.Genetic significance of multiple enclave types in a peraluminous ignimbrite suite, Lachlan fold belt, Australia[J].Journal of Petrology, 1996, 37(6):1385-1408. doi: 10.1093/petrology/37.6.1385
CrossRef Google Scholar
|
[2] |
Yang J H, Wu F Y, Chung S L, et al.Multiple sources for the origin of granites:Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves Northeast China[J].Geochimica et Cosmochimica Acta, 2004, 68:4469-4483. doi: 10.1016/j.gca.2004.04.015
CrossRef Google Scholar
|
[3] |
Yang J H, Wu F Y, Wilde S A, et al.Tracing magma mixing in granite genesis:In situ U-Pb dating and Hf-isotope analysis of zircons[J].Contributions to Mineralogy and Petrology, 2007, 153:177-190.
Google Scholar
|
[4] |
Cheng Y, Spandler C, Mao J, et al.Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China:A case of two-stage mixing of crust-and mantle-derived magmas[J].Contributions to Mineralogy and Petrology, 2012, 164(4):659-676. doi: 10.1007/s00410-012-0766-0
CrossRef Google Scholar
|
[5] |
Flood R H, Shaw S E.Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia:Pressure quench cumulates[J].Lithos, 2014, 198-199(3):92-102.
Google Scholar
|
[6] |
Clemens J D, Elburg M A.Comment-origin of enclaves in S-type granites of the Lachlan fold belt[J].Lithos, 2013, 175-176(5):351-352.
Google Scholar
|
[7] |
Wyborn D.Reply-origin of enclaves in S-type granites of the Lachlan fold belt[J].Lithos, 2013, 154(6):353-354.
Google Scholar
|
[8] |
Shellnutt J G, Jahn B M, Dostal J.Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China[J].Lithos, 2010, 119(1-2):34-46. doi: 10.1016/j.lithos.2010.07.011
CrossRef Google Scholar
|
[9] |
Niu Y, Zhao Z, Zhu D C, et al.Continental collision zones are primary sites for net continental crust growth-A testable hypothesis[J].Earth-Science Reviews, 2013, 127(2):96-110.
Google Scholar
|
[10] |
Huang H, Niu Y, Nowell G, et al.Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, Northern Tibetan Plateau:Implications for continental crust growth through syn-collisional felsic magmatism[J].Chemical Geology, 2014, 370(4):1-18.
Google Scholar
|
[11] |
Chen S, Niu Y, Sun W, et al.On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids:Evidence from the Baojishan pluton in the North Qilian Orogen, China[J].Mineralogy and Petrology, 2015, 109(5):577-596. doi: 10.1007/s00710-015-0383-5
CrossRef Google Scholar
|
[12] |
Barbarin B.Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:Nature, origin and relations with the hosts[J].Lithos, 2005, 80(1):155-177.
Google Scholar
|
[13] |
Kaygusuz A, Aydinakir E.Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey:Evidence of magma mixing, mingling and chemical equilibration[J].Chemie Der Erde-Geochemistry, 2009, 69(3):247-277. doi: 10.1016/j.chemer.2008.08.002
CrossRef Google Scholar
|
[14] |
Kocak K, Zedef V, Kansun G.Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central Southern Turkey:Evidence from mafic microgranular enclaves[J].Mineralogy and Petrology, 2011, 103(1):149-167.
Google Scholar
|
[15] |
Perugini D, Poli G.The mixing of magmas in plutonic and volcanic environments:Analogies and differences[J].Lithos, 2012, 153(8):261-277.
Google Scholar
|
[16] |
Xiong F H, Ma C Q, Zhang J Y, et al.The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J].Mineralogy and Petrology, 2012, 104(3):211-224.
Google Scholar
|
[17] |
Dan W, Wang Q, Wang X C, et al.Overlapping Sr-Nd-Hf-O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China:Evidence for crust-mantle interaction and implications for the generation of silicic igneous provinces[J].Lithos, 2015, 230:133-145. doi: 10.1016/j.lithos.2015.05.016
CrossRef Google Scholar
|
[18] |
Chen B, Chen Z C, Jahn B M.Origin of mafic enclaves from the Taihang Mesozoic orogen, North China craton[J].Lithos, 2009, 110(1-4):343-358. doi: 10.1016/j.lithos.2009.01.015
CrossRef Google Scholar
|
[19] |
Zhao K D, Jiang S Y, Yang S Y, et al.Mineral chemistry, Trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholiths in the Shi-Hang zone, South China[J].Gondwana Research, 2012, 22(1):310-324. doi: 10.1016/j.gr.2011.09.010
CrossRef Google Scholar
|
[20] |
Xia R, Wang C, Min Q, et al.Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen:Record of closure of the Paleo-Tethys[J].Lithos, 2015, 234-235(3):47-60.
Google Scholar
|
[21] |
Zeng R, Lai J, Mao X, et al.Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China:Constraints on their petrogenesis, source characteristics and tectonic implication[J].Journal of Asian Earth Sciences, 2016, 121:20-33. doi: 10.1016/j.jseaes.2016.02.009
CrossRef Google Scholar
|
[22] |
Zheng Y F, Chen Y X, Dai L Q, et al.Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J].Science China Earth Sciences, 2015, 58(7):1045-1069. doi: 10.1007/s11430-015-5097-3
CrossRef Google Scholar
|
[23] |
陈国超, 裴先治, 李瑞保, 等.东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁铁质微粒包体的证据[J].地学前缘, 2016, 23(4):226-240.
Google Scholar
Chen G C, Pei X Z, Li R B, et al.Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun Orogen:Evidence from mafic microgranular enclaves (MMEs)[J].Earth Science Frontiers, 2016, 23(4):226-240.
Google Scholar
|
[24] |
李玮, 高卫, 刘淑琴, 等.塔里木西南缘和田布雅花岗岩锆石SHRIMP U-Pb年龄及地质意义[J].新疆地质, 2007, 25(3):237-242.
Google Scholar
Li W, Gao W, Liu S Q, et al.Zircon SHRIMP U-Pb dating of Buya granite and its geological significance discuss from the Southwest Tarim Basin, Xinjiang[J].Xinjiang Geology, 2007, 25(3):237-242.
Google Scholar
|
[25] |
Ye H M, Li X H, Li Z X, et al.Age and origin of high Ba-Sr appinite-granites at the northwestern margin of the Tibet Plateau:Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt[J].Gondwana Research, 2008, 13(1):126-138. doi: 10.1016/j.gr.2007.08.005
CrossRef Google Scholar
|
[26] |
陈博, 秦克章, 唐冬梅, 等.新疆磁海铁矿区镁铁质岩及正长岩锆石U-Pb年代学、岩石地球化学特征:对成岩、成矿作用的制约[J].岩石学报, 2015, 31(8):2156-2174.
Google Scholar
Chen B, Qin K Z, Tang D M, et al.Lithological, chronological and geochemical characteristics of Cihai iron deposit, Eastern Xinjiang:Constraints on genesis of mafic-ultramafic and syenite intrusions and mineralization[J].Acta Petrologica Sinica, 2015, 31(8):2156-2174.
Google Scholar
|
[27] |
崔军文, 郭宪璞, 丁孝忠, 等.西昆仑-塔里木盆地盆-山结合带的中、新生代变形构造及其动力学[J].地学前缘, 2006, 13(4):103-118.
Google Scholar
Cui J W, Guo X P, Ding X Z, et al.Mesozoic-cenozoic deformation structures and their dynamics in the basin-range junction belt of the West Kunlun-Tarim basin[J].Earth Science Frontiers, 2006, 13(4):103-118.
Google Scholar
|
[28] |
Zhang C L, Ye X T, Zou H B, et al.Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China:New evidence from field observations, detrital zircon U-Pb ages and Hf isotope compositions[J].Precambrian Research, 2016, 280:31-45. doi: 10.1016/j.precamres.2016.04.011
CrossRef Google Scholar
|
[29] |
Yuan H L, Gao S, Liu X M, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3
CrossRef Google Scholar
|
[30] |
吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
CrossRef Google Scholar
Wu Y B, Zheng Y F.Study on the origin mineralogy of zircon and its restriction to U-Pb age[J].Chinese Science Bulletin, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
CrossRef Google Scholar
|
[31] |
Siebe L, Blaha U, Chen F, et al.Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif[J].International Journal of Earth Sciences, 2005, 94(1):8-23. doi: 10.1007/s00531-004-0445-0
CrossRef Google Scholar
|
[32] |
高晓峰, 校培喜, 康磊, 等.西昆仑大同西岩体成因:矿物学、地球化学和锆石U-Pb年代学制约[J].岩石学报, 2013, 29(9):109-123.
Google Scholar
Gao X F, Xiao P X, Kang L, et al.Origin of Datongxi plutonin the West Kunlun orogen:Constraints from mineralogy, elemental geochemistry and zircon U-Pb age[J].Acta Petrologica Sinica, 2013, 29(9):3065-3079.
Google Scholar
|
[33] |
Liu Z, Jiang Y H, Jia R Y, et al.Origin of Middle Cambrian and Late Silurian potassic granitoids from the Western Kunlun orogen, Northwest China:A magmatic response to the Proto-Tethys evolution[J].Mineralogy and Petrology, 2014, 108(1):91-110. doi: 10.1007/s00710-013-0288-0
CrossRef Google Scholar
|
[34] |
Dahlquist J A.Mafic microgranular enclaves:Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina[J].Journal of South American Earth Sciences, 2002, 15(6):643-655. doi: 10.1016/S0895-9811(02)00112-8
CrossRef Google Scholar
|
[35] |
Baxter S, Fecly M.Magma mixing mingling textures in granitoids:Examples from the Galway granite, Conncmara, Ircland[J].Mineralogy and Petrology, 2002, 76:63-74. doi: 10.1007/s007100200032
CrossRef Google Scholar
|
[36] |
Grogan S E, Reavy R J.Disequilibrium textures in the Leinster granite complex.SE Ireland:Evidence for acid-acid magma mixing[J].Mineralogical Magazine, 2002, 66(6):929-939. doi: 10.1180/0026461026660068
CrossRef Google Scholar
|
[37] |
邹涛, 王玉往, 王京彬, 等.内蒙古敖仑花斑岩钼铜矿含矿斑岩的岩浆混合特征及其地质意义[J].吉林大学学报(地球科学版), 2012, 42(增刊):171-187.
Google Scholar
Zou T, Wang Y W, Wang J B, et al.Magma mixing characteristics and geological significance of host porphyry from the Aolunhua Mo-Cu deposit, Inner Mongolia[J].Journal of Jilin University(Earth Science), 2012, 42(Supplement):171-187.
Google Scholar
|
[38] |
张传林, 于海锋, 沈家林, 等.西昆仑库地伟晶辉长岩和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体[J].地质论评, 2004, 50(6):639-643.
Google Scholar
Zhang C L, Yu H F, Shen J L, et al.Zircon SHRIMP age determination of the Giant-crystal gabbro and Basaltin Kǘ da, West Kunlun:Dismembering of the Kǘ da Ophiolite[J].Geological Review, 2004, 50(6):639-643.
Google Scholar
|
[39] |
李天福, 张建新.西昆仑库地蛇绿岩的二辉辉石岩和玄武岩锆石LA-ICP-MS U-Pb年龄及其意义[J].岩石学报, 2014, 30(8):2393-2401.
Google Scholar
Li T F, Zhang J X.Zircon LA-ICP-MS U-Pb ages of websterite and basalt in Kudi ophiolite and the implication, West Kunlun[J].Acta Petrologica Sinica, 2014, 30(8):2393-2401.
Google Scholar
|
[40] |
魏国齐, 贾承造, 李本亮, 等.塔里木盆地南缘志留-泥盆纪周缘前陆盆地[J].科学通报, 2002, 47(增刊):45-48.
Google Scholar
Wei G Q, Jia C Z, Li B L, et al.Silurian to Devonian foreland basin in the south edge of Tarim Basin[J].Chinese Science Bulletin, 2002, 47(Supplement):45-48.
Google Scholar
|
[41] |
李丕龙, 冯建辉, 樊太亮, 等.塔里木盆地构造沉积与成藏[M].北京:地质出版社, 2010:4-43.
Google Scholar
Li P L, Feng J H, Fan T L, et al.Tectonics, deposits and hydrocarbon accumulation in Tarim Basin[M].Beijing:Geological Publishing House, 2010:4-43.
Google Scholar
|
[42] |
李曰俊, 孙龙德, 杨海军, 等.塔里木盆地晚志留世-石炭纪伸展构造的发现及其地质意义[J].地质科学, 2014, 49(1):30-48.
Google Scholar
Li Y J, Sun L D, Yang H J, et al.New discovery of Late Silurian-Carboniferous extensional structure in Tarim Basin and its geological significance[J].Chinese Journal of Geology, 2014, 49(1):30-48.
Google Scholar
|
[43] |
杨海军, 李曰俊, 李勇, 等.塔里木盆地南部玛东早古生代褶皱-冲断带[J].岩石学报, 2016, 32(3):815-824.
Google Scholar
Yang H J, Li Y J, Li Y, et al.Madong Early Paleozoic fold-thrust belt in the Southern Tarim Basin[J].Acta Petrologica Sinica, 2016, 32(3):815-824.
Google Scholar
|