Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 5
Article Contents

Xue-yuan HU, Rui-qing GUO, NUER Kanati·Madayipu, Yu GUO, Ming-yu ZOU, Biao LÜ, Zhen WEI. Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang[J]. Rock and Mineral Analysis, 2017, 36(5): 538-550. doi: 10.15898/j.cnki.11-2131/td.201703190035
Citation: Xue-yuan HU, Rui-qing GUO, NUER Kanati·Madayipu, Yu GUO, Ming-yu ZOU, Biao LÜ, Zhen WEI. Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang[J]. Rock and Mineral Analysis, 2017, 36(5): 538-550. doi: 10.15898/j.cnki.11-2131/td.201703190035

Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang

More Information
  • Paleozoic acidic intrusive rocks are widespread in the Tiekelike tectonic belt of the southern margin of Tarim. Petrography, whole-rock major and trace elements, and zircon U-Pb dating are reported for the Buya granodiorite and its mafic microgranular enclaves (MMEs), which are used to constrain their petrogenesis and tectonic setting. High-precision LA-MC-ICP-MS zircon U-Pb dating has revealed that the quartz monzobiorite was formed at 432.6±2.5 Ma (MSWD=1.5), and its microgranular enclaves were formed at 432.4±6.4 Ma (MSWD=0.031) indicating that both of them are the products of early Silurian magma activity. Chemical composition suggests that the enclaves were derived from partial melting of the mantle, while the magma of the host rocks is mainly crustal and is mixed with minor mantle-derived magma. Both the field and petrographic characteristics show that the dark enclaves were formed by the rapid condensation of the mafic magma into the felsic magma, which is the product of the magmatic mixing by the mantle underplating of the lower crust. They are magmatic records of the late stage of early Paleozoic collision orogeny in the southern margin of Tarim.
  • 加载中
  • [1] Elburg M A.Genetic significance of multiple enclave types in a peraluminous ignimbrite suite, Lachlan fold belt, Australia[J].Journal of Petrology, 1996, 37(6):1385-1408. doi: 10.1093/petrology/37.6.1385

    CrossRef Google Scholar

    [2] Yang J H, Wu F Y, Chung S L, et al.Multiple sources for the origin of granites:Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves Northeast China[J].Geochimica et Cosmochimica Acta, 2004, 68:4469-4483. doi: 10.1016/j.gca.2004.04.015

    CrossRef Google Scholar

    [3] Yang J H, Wu F Y, Wilde S A, et al.Tracing magma mixing in granite genesis:In situ U-Pb dating and Hf-isotope analysis of zircons[J].Contributions to Mineralogy and Petrology, 2007, 153:177-190.

    Google Scholar

    [4] Cheng Y, Spandler C, Mao J, et al.Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China:A case of two-stage mixing of crust-and mantle-derived magmas[J].Contributions to Mineralogy and Petrology, 2012, 164(4):659-676. doi: 10.1007/s00410-012-0766-0

    CrossRef Google Scholar

    [5] Flood R H, Shaw S E.Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia:Pressure quench cumulates[J].Lithos, 2014, 198-199(3):92-102.

    Google Scholar

    [6] Clemens J D, Elburg M A.Comment-origin of enclaves in S-type granites of the Lachlan fold belt[J].Lithos, 2013, 175-176(5):351-352.

    Google Scholar

    [7] Wyborn D.Reply-origin of enclaves in S-type granites of the Lachlan fold belt[J].Lithos, 2013, 154(6):353-354.

    Google Scholar

    [8] Shellnutt J G, Jahn B M, Dostal J.Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China[J].Lithos, 2010, 119(1-2):34-46. doi: 10.1016/j.lithos.2010.07.011

    CrossRef Google Scholar

    [9] Niu Y, Zhao Z, Zhu D C, et al.Continental collision zones are primary sites for net continental crust growth-A testable hypothesis[J].Earth-Science Reviews, 2013, 127(2):96-110.

    Google Scholar

    [10] Huang H, Niu Y, Nowell G, et al.Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, Northern Tibetan Plateau:Implications for continental crust growth through syn-collisional felsic magmatism[J].Chemical Geology, 2014, 370(4):1-18.

    Google Scholar

    [11] Chen S, Niu Y, Sun W, et al.On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids:Evidence from the Baojishan pluton in the North Qilian Orogen, China[J].Mineralogy and Petrology, 2015, 109(5):577-596. doi: 10.1007/s00710-015-0383-5

    CrossRef Google Scholar

    [12] Barbarin B.Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:Nature, origin and relations with the hosts[J].Lithos, 2005, 80(1):155-177.

    Google Scholar

    [13] Kaygusuz A, Aydinakir E.Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey:Evidence of magma mixing, mingling and chemical equilibration[J].Chemie Der Erde-Geochemistry, 2009, 69(3):247-277. doi: 10.1016/j.chemer.2008.08.002

    CrossRef Google Scholar

    [14] Kocak K, Zedef V, Kansun G.Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central Southern Turkey:Evidence from mafic microgranular enclaves[J].Mineralogy and Petrology, 2011, 103(1):149-167.

    Google Scholar

    [15] Perugini D, Poli G.The mixing of magmas in plutonic and volcanic environments:Analogies and differences[J].Lithos, 2012, 153(8):261-277.

    Google Scholar

    [16] Xiong F H, Ma C Q, Zhang J Y, et al.The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J].Mineralogy and Petrology, 2012, 104(3):211-224.

    Google Scholar

    [17] Dan W, Wang Q, Wang X C, et al.Overlapping Sr-Nd-Hf-O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China:Evidence for crust-mantle interaction and implications for the generation of silicic igneous provinces[J].Lithos, 2015, 230:133-145. doi: 10.1016/j.lithos.2015.05.016

    CrossRef Google Scholar

    [18] Chen B, Chen Z C, Jahn B M.Origin of mafic enclaves from the Taihang Mesozoic orogen, North China craton[J].Lithos, 2009, 110(1-4):343-358. doi: 10.1016/j.lithos.2009.01.015

    CrossRef Google Scholar

    [19] Zhao K D, Jiang S Y, Yang S Y, et al.Mineral chemistry, Trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholiths in the Shi-Hang zone, South China[J].Gondwana Research, 2012, 22(1):310-324. doi: 10.1016/j.gr.2011.09.010

    CrossRef Google Scholar

    [20] Xia R, Wang C, Min Q, et al.Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen:Record of closure of the Paleo-Tethys[J].Lithos, 2015, 234-235(3):47-60.

    Google Scholar

    [21] Zeng R, Lai J, Mao X, et al.Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China:Constraints on their petrogenesis, source characteristics and tectonic implication[J].Journal of Asian Earth Sciences, 2016, 121:20-33. doi: 10.1016/j.jseaes.2016.02.009

    CrossRef Google Scholar

    [22] Zheng Y F, Chen Y X, Dai L Q, et al.Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J].Science China Earth Sciences, 2015, 58(7):1045-1069. doi: 10.1007/s11430-015-5097-3

    CrossRef Google Scholar

    [23] 陈国超, 裴先治, 李瑞保, 等.东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁铁质微粒包体的证据[J].地学前缘, 2016, 23(4):226-240.

    Google Scholar

    Chen G C, Pei X Z, Li R B, et al.Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun Orogen:Evidence from mafic microgranular enclaves (MMEs)[J].Earth Science Frontiers, 2016, 23(4):226-240.

    Google Scholar

    [24] 李玮, 高卫, 刘淑琴, 等.塔里木西南缘和田布雅花岗岩锆石SHRIMP U-Pb年龄及地质意义[J].新疆地质, 2007, 25(3):237-242.

    Google Scholar

    Li W, Gao W, Liu S Q, et al.Zircon SHRIMP U-Pb dating of Buya granite and its geological significance discuss from the Southwest Tarim Basin, Xinjiang[J].Xinjiang Geology, 2007, 25(3):237-242.

    Google Scholar

    [25] Ye H M, Li X H, Li Z X, et al.Age and origin of high Ba-Sr appinite-granites at the northwestern margin of the Tibet Plateau:Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt[J].Gondwana Research, 2008, 13(1):126-138. doi: 10.1016/j.gr.2007.08.005

    CrossRef Google Scholar

    [26] 陈博, 秦克章, 唐冬梅, 等.新疆磁海铁矿区镁铁质岩及正长岩锆石U-Pb年代学、岩石地球化学特征:对成岩、成矿作用的制约[J].岩石学报, 2015, 31(8):2156-2174.

    Google Scholar

    Chen B, Qin K Z, Tang D M, et al.Lithological, chronological and geochemical characteristics of Cihai iron deposit, Eastern Xinjiang:Constraints on genesis of mafic-ultramafic and syenite intrusions and mineralization[J].Acta Petrologica Sinica, 2015, 31(8):2156-2174.

    Google Scholar

    [27] 崔军文, 郭宪璞, 丁孝忠, 等.西昆仑-塔里木盆地盆-山结合带的中、新生代变形构造及其动力学[J].地学前缘, 2006, 13(4):103-118.

    Google Scholar

    Cui J W, Guo X P, Ding X Z, et al.Mesozoic-cenozoic deformation structures and their dynamics in the basin-range junction belt of the West Kunlun-Tarim basin[J].Earth Science Frontiers, 2006, 13(4):103-118.

    Google Scholar

    [28] Zhang C L, Ye X T, Zou H B, et al.Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China:New evidence from field observations, detrital zircon U-Pb ages and Hf isotope compositions[J].Precambrian Research, 2016, 280:31-45. doi: 10.1016/j.precamres.2016.04.011

    CrossRef Google Scholar

    [29] Yuan H L, Gao S, Liu X M, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3

    CrossRef Google Scholar

    [30] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    Wu Y B, Zheng Y F.Study on the origin mineralogy of zircon and its restriction to U-Pb age[J].Chinese Science Bulletin, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [31] Siebe L, Blaha U, Chen F, et al.Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif[J].International Journal of Earth Sciences, 2005, 94(1):8-23. doi: 10.1007/s00531-004-0445-0

    CrossRef Google Scholar

    [32] 高晓峰, 校培喜, 康磊, 等.西昆仑大同西岩体成因:矿物学、地球化学和锆石U-Pb年代学制约[J].岩石学报, 2013, 29(9):109-123.

    Google Scholar

    Gao X F, Xiao P X, Kang L, et al.Origin of Datongxi plutonin the West Kunlun orogen:Constraints from mineralogy, elemental geochemistry and zircon U-Pb age[J].Acta Petrologica Sinica, 2013, 29(9):3065-3079.

    Google Scholar

    [33] Liu Z, Jiang Y H, Jia R Y, et al.Origin of Middle Cambrian and Late Silurian potassic granitoids from the Western Kunlun orogen, Northwest China:A magmatic response to the Proto-Tethys evolution[J].Mineralogy and Petrology, 2014, 108(1):91-110. doi: 10.1007/s00710-013-0288-0

    CrossRef Google Scholar

    [34] Dahlquist J A.Mafic microgranular enclaves:Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina[J].Journal of South American Earth Sciences, 2002, 15(6):643-655. doi: 10.1016/S0895-9811(02)00112-8

    CrossRef Google Scholar

    [35] Baxter S, Fecly M.Magma mixing mingling textures in granitoids:Examples from the Galway granite, Conncmara, Ircland[J].Mineralogy and Petrology, 2002, 76:63-74. doi: 10.1007/s007100200032

    CrossRef Google Scholar

    [36] Grogan S E, Reavy R J.Disequilibrium textures in the Leinster granite complex.SE Ireland:Evidence for acid-acid magma mixing[J].Mineralogical Magazine, 2002, 66(6):929-939. doi: 10.1180/0026461026660068

    CrossRef Google Scholar

    [37] 邹涛, 王玉往, 王京彬, 等.内蒙古敖仑花斑岩钼铜矿含矿斑岩的岩浆混合特征及其地质意义[J].吉林大学学报(地球科学版), 2012, 42(增刊):171-187.

    Google Scholar

    Zou T, Wang Y W, Wang J B, et al.Magma mixing characteristics and geological significance of host porphyry from the Aolunhua Mo-Cu deposit, Inner Mongolia[J].Journal of Jilin University(Earth Science), 2012, 42(Supplement):171-187.

    Google Scholar

    [38] 张传林, 于海锋, 沈家林, 等.西昆仑库地伟晶辉长岩和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体[J].地质论评, 2004, 50(6):639-643.

    Google Scholar

    Zhang C L, Yu H F, Shen J L, et al.Zircon SHRIMP age determination of the Giant-crystal gabbro and Basaltin Kǘ da, West Kunlun:Dismembering of the Kǘ da Ophiolite[J].Geological Review, 2004, 50(6):639-643.

    Google Scholar

    [39] 李天福, 张建新.西昆仑库地蛇绿岩的二辉辉石岩和玄武岩锆石LA-ICP-MS U-Pb年龄及其意义[J].岩石学报, 2014, 30(8):2393-2401.

    Google Scholar

    Li T F, Zhang J X.Zircon LA-ICP-MS U-Pb ages of websterite and basalt in Kudi ophiolite and the implication, West Kunlun[J].Acta Petrologica Sinica, 2014, 30(8):2393-2401.

    Google Scholar

    [40] 魏国齐, 贾承造, 李本亮, 等.塔里木盆地南缘志留-泥盆纪周缘前陆盆地[J].科学通报, 2002, 47(增刊):45-48.

    Google Scholar

    Wei G Q, Jia C Z, Li B L, et al.Silurian to Devonian foreland basin in the south edge of Tarim Basin[J].Chinese Science Bulletin, 2002, 47(Supplement):45-48.

    Google Scholar

    [41] 李丕龙, 冯建辉, 樊太亮, 等.塔里木盆地构造沉积与成藏[M].北京:地质出版社, 2010:4-43.

    Google Scholar

    Li P L, Feng J H, Fan T L, et al.Tectonics, deposits and hydrocarbon accumulation in Tarim Basin[M].Beijing:Geological Publishing House, 2010:4-43.

    Google Scholar

    [42] 李曰俊, 孙龙德, 杨海军, 等.塔里木盆地晚志留世-石炭纪伸展构造的发现及其地质意义[J].地质科学, 2014, 49(1):30-48.

    Google Scholar

    Li Y J, Sun L D, Yang H J, et al.New discovery of Late Silurian-Carboniferous extensional structure in Tarim Basin and its geological significance[J].Chinese Journal of Geology, 2014, 49(1):30-48.

    Google Scholar

    [43] 杨海军, 李曰俊, 李勇, 等.塔里木盆地南部玛东早古生代褶皱-冲断带[J].岩石学报, 2016, 32(3):815-824.

    Google Scholar

    Yang H J, Li Y J, Li Y, et al.Madong Early Paleozoic fold-thrust belt in the Southern Tarim Basin[J].Acta Petrologica Sinica, 2016, 32(3):815-824.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(2448) PDF downloads(77) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint