[1] |
周国华.多目标区域地球化学调查:分析测试面临的机遇和挑战[J].岩矿测试, 2010, 29(3):296-300.
Google Scholar
Zhou G H.Multi-purpose regional geochemical survey:Opportunities and challenges for geochemical analysis[J].Rock and Mineral Analysis, 2010, 29(3):296-300.
Google Scholar
|
[2] |
叶家瑜, 张蕾.多目标地球化学勘查样品分析方法配套方案[J].地质通报, 2006, 25(6):741-744.
Google Scholar
Ye J Y, Zhang L.Combination schemes of sample analysis methods for multitarget geochemical survey[J].Geological Bulletin of China, 2006, 25(6):741-744.
Google Scholar
|
[3] |
张勤.多目标区域地球化学填图中的54种指标配套分析方案和分析质量监控系统[J].第四纪研究, 2005, 25(3):292-297.
Google Scholar
Zhang Q.A complete set of analytical schemes and analytical data monitoring systems for determ in nations of 54 components in multipurpose geochemical mapping[J].Quaternary Sciences, 2005, 25(3):292-297.
Google Scholar
|
[4] |
岩石矿物分析编委会.岩石矿物分析(第四版第四分册)[M].北京:地质出版社, 2011:791-865.
Google Scholar
The Editorial Committee of Rocks and Minerals Analysis.Rocks and Minerals Analysis (The Fourth Edition:Part Ⅳ)[M].Beijing:Geological Publishing House, 2011:791-865.
Google Scholar
|
[5] |
罗立强, 詹秀春, 李国会. X射线荧光光谱分析[M].北京:化学工业出版社, 2015.
Google Scholar
Luo L Q, Zhan X C, Li G H.X-ray Fluorescence Spectro-metry[M].Beijing:Chemical Industry Press, 2015.
Google Scholar
|
[6] |
于波, 严志远, 杨乐山, 等.X射线荧光光谱法测定土壤和水系沉积物中碳和氮等36个主次痕量元素[J].岩矿测试, 2006, 25(1):74-78.
Google Scholar
Yu B, Yan Z Y, Yang L S, et al.Determination of 36 major, minor and trace elements in soil and stream sediment samples by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2006, 25(1):74-78.
Google Scholar
|
[7] |
苏梦晓, 陆安军.电感耦合等离子体原子发射光谱法、X射线荧光光谱法和摄谱法测定地球化学样品中铜、铅、锌、镍的比较[J].冶金分析, 2015, 35(5):48-53.
Google Scholar
Su M X, Lu A J.Comparison of inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry and spectrographic method for the determination of copper, lead, zinc and nickel in geochemical samples[J].Metallurgical Analysis, 2015, 35(5):48-53.
Google Scholar
|
[8] |
刘珠丽, 李洁, 杨永强, 等.微波消解-ICP-AES-ICP-MS测定沉积物中23种元素的方法研究及应用.[J].环境化学, 2013, 32(12):2371-2377.
Google Scholar
Liu Z L, Li J, Yang Y Q, et al.Research and application of microwave assisted digestion procedure for the determination of 23 elements in sediments by ICP-AES/ICP-MS[J].Environmental Chemistry, 2013, 32(12):2371-2377.
Google Scholar
|
[9] |
Criss J W, Birks L S.Calculation methods for fluorescent X-ray spectrometry empirical coeffcients vs.fundamental parameters[J].Analytical Chemistry, 1968, 40(7):1080-1086. doi: 10.1021/ac60263a023
CrossRef Google Scholar
|
[10] |
Klimasara A J.Mathematical modeling of XRF matrix correction algorithms with an electronic spreadsheet[J].Advances in X-ray Analysis, 1994, 37:647-656.
Google Scholar
|
[11] |
Lee R F, McConchie D R.Comprehensive major and trace elements analysis of geological material by X-ray fluorescence using low dilution fusion[J].X-Ray Spectrometry, 1982, 11(2):55-63. doi: 10.1002/(ISSN)1097-4539
CrossRef Google Scholar
|
[12] |
Younis A, Ahmadi Z, Adams M G, et al.A simple method for quantitative analysis of elements by WD-XRF using variable dilution factors in fusion bead technique for geologic specimens[J].X-Ray Spectrometry, 2017, 46(1):69-76. doi: 10.1002/xrs.v46.1
CrossRef Google Scholar
|
[13] |
包生祥.X射线荧光光谱分析检出限计算公式[J].光谱学与光谱分析, 1992, 12(4):93-96.
Google Scholar
Bao S X.Calculation formula for detection limit of X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 1992, 12(4):93-96.
Google Scholar
|
[14] |
陈静, 高志军, 陈冲科, 等.X射线荧光光谱法分析地质样品的应用技巧[J].岩矿测试, 2015, 34(1):91-98.
Google Scholar
Chen J, Gao Z J, Chen C K, et al.Application skills on determination of geological sample by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2015, 34(1):91-98.
Google Scholar
|