Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 2
Article Contents

Wei-ping WANG, Yu-chuan CHEN. Quantitative Research for Global Iron Ore Breakeven Operating Cost Based on BIF-type Enriched Mineralization Characteristics[J]. Rock and Mineral Analysis, 2017, 36(2): 187-195. doi: 10.15898/j.cnki.11-2131/td.2017.02.013
Citation: Wei-ping WANG, Yu-chuan CHEN. Quantitative Research for Global Iron Ore Breakeven Operating Cost Based on BIF-type Enriched Mineralization Characteristics[J]. Rock and Mineral Analysis, 2017, 36(2): 187-195. doi: 10.15898/j.cnki.11-2131/td.2017.02.013

Quantitative Research for Global Iron Ore Breakeven Operating Cost Based on BIF-type Enriched Mineralization Characteristics

  • The benchmark comparative price between global seaborne iron ore and Chinese domestic iron ore is based on free on board (FOB) or cost, insurance and freight (CIF), resulting in imprecise market pressure price estimation for Chinese domestic iron ore, due to the lack of the breakeven operating cost. To clarify the quantitative data of breakeven operating cost of iron ore products by tier-1 producers, systematic study has been carried out in terms of high-grade hematite enriched mineralization characteristics and typical iron ore products by different enriched types from banded iron formation (BIF) in Hamersley Basin, Western Australia. At the same time, the itabirite-type hematite ore in Brazil is introduced as a control to analyze the economic indicators of typical high grade hematite ore. Based on the previous research results, the enriched mineralization types of high grade hematite associated with BIF in the Hamersley Basin, Western Australia, are classified into Martite-Goethite, Microplaty Hematite and channel iron deposit (CID) type hematite; and in the Iron Quadrangle, Brazil, they are mainly itabirite-type hematite. Brazilian iron is grouped into itabirite type hematite. The iron content of the iron ore products corresponding to each mineralization type is higher than 56%. On the impurity element content, the pseudo-hematite-goethite has high phosphorus content, whereas micro-plate hematite has high phosphorus and sulfur. The river sedimentary hematite has lower phosphorus and sulfur contents, whereas itabirite type hematite contains Mn. Representative global iron ore producers, including Rio Tinto, BHP Billiton, Fortescue Metals Group Ltd (FMG) and Vale, have reached the breakeven operating cost of 34.66, 36.76, 47.35 and 38.07 $/dmt, respectively, which could offer the OPEX cost reference for development of Chinese overseas iron ore equity projects..
  • 加载中
  • [1] 王崴平, 陈毓川.全球海运铁矿石市场承压解析与行业影响[J].国土资源科技管理, 2016, 33(3):54-65.

    Google Scholar

    Wang W P, Chen Y C.Analysis of global seaborne iron ore market pressure and observation of its influence to iron ore sector[J].Scientific and Technological Management of Land and Resources, 2016, 33(3):54-65.

    Google Scholar

    [2] 张艳飞, 陈其慎, 于汶加, 等.2015—2040年全球铁矿石供需趋势分析[J].资源科学, 2015, 37(5):921-932.

    Google Scholar

    Zhang Y F, Chen Q S, Yu W J, et al.2015—2040 global iron ore supply and demand trend analysis[J].Resources Science, 2015, 37(5):921-932.

    Google Scholar

    [3] 政策压力增大或将对低品位铁矿石市场构成压制[J]. 现代矿业, 2012(4): 12.

    Google Scholar

    Suppression for low-grade iron ore markets due to enlarged policy pressure[J].Modern Mining, 2012(4):12.

    Google Scholar

    [4] 田玉军, 朱吉双, 马国霞, 等.国际铁矿石定价机制改变与我国铁矿石进口量变化的实证分析[J].自然资源学报, 2012, 27(9):1490-1496. doi: 10.11849/zrzyxb.2012.09.006

    CrossRef Google Scholar

    Tian Y J, Zhu J S, Ma G X, et al.Empirical analysis on impact of the new international pricing mechanism on iron ore imports of China[J].Journal of Natural Resources, 2012, 27(9):1490-1496. doi: 10.11849/zrzyxb.2012.09.006

    CrossRef Google Scholar

    [5] 刘雅琪, 谢波.基于改进加权移动平均法的铁矿石到岸价格预测[J].上海海事大学学报, 2015, 36(2):55-59.

    Google Scholar

    Liu Y Q, Xie B.Iron ore CIF price forecasting based on improved weighted moving average method[J].Journal of Shanghai Maritime University, 2015, 36(2):55-59.

    Google Scholar

    [6] Beukes N J, Gutzmer J, Mukhopadhyay J.The geology and genesis of high-grade hematite iron ore deposits[J].Applied Earth Sciences, 2003, 112:18-25. doi: 10.1179/037174503225011243

    CrossRef Google Scholar

    [7] Hagemann S G, Angerer T, Duuring P, et al.BIF-hosted iron mineral system:A review[J].Ore Geology Reviews, 2016, 76:317-359. doi: 10.1016/j.oregeorev.2015.11.004

    CrossRef Google Scholar

    [8] Hagemann S, Dalstra H I, Hodkiewicz P, et al.Recent advances in BIF-related iron ore models and exploration strategies[C]//Proceedings of Exploration 07:Fifth Decennial International Conference on Mineral Exploration (Milkereit B, eds).Ore Deposits and Exploration Technology, 2007:811-821.

    Google Scholar

    [9] Ohmoto H.Nonredox transformations of magnetite-hematite in hydrothermal systems[J].Economic Geology, 2003, 98(1):157-161. doi: 10.2113/gsecongeo.98.1.157

    CrossRef Google Scholar

    [10] Thompson A.A Hydrothermal Model for Metasomatism of Neoarchean Algoma-type Banded Iron Formation to Massive Hematite Ore at the Soudan Mine, NE Minnesota[D].Minnesota:University of Minnesota, 2015:1-59.

    Google Scholar

    [11] Fowers C, Kepert D, Absalom M, et al.Discovery, Geology and Structural Setting of the Nyidinghu Iron Ore Deposit, Hamersley Province, Western Australia[C]//Proceedings of Iron Ore Conference.Perth:Australasian Institute of Mining and Metallurgy, 2013:81-90.

    Google Scholar

    [12] Morris R C, Kneeshaw M.Genesis modelling for the Hamersley BIF-hosted iron ores of Western Australia:A critical review[J].Australian Journal of Earth Sciences, 2011, 58(5):417-451. doi: 10.1080/08120099.2011.566937

    CrossRef Google Scholar

    [13] 邹健.世界铁矿矿情[M].北京:中国冶金矿山企业协会, 2005:1-758.

    Google Scholar

    Zou J.World Iron Ore[M].Beijing:Metallurgical Mines Association of China, 2005:1-758.

    Google Scholar

    [14] Dorr J V N.Physiographic, Stratigraphic, and Structural Development of the Quadrilatero Ferrifero, Minas Gerais, Brazil[M].US Geological Survey Professional Paper 641A, 1969:1-110.

    Google Scholar

    [15] Spier C A, Oliveria S M, Rosière C A.Geology and geochemistry of the Águas Claras and Pico iron mines, Quadrilátero Ferrífero, Minas Gerais, Brazil[J].Mineralium Deposita, 2003, 38:751-774. doi: 10.1007/s00126-003-0371-2

    CrossRef Google Scholar

    [16] Clout J M F.Iron Formation-Hosted Iron Ores in the Hamersley Province of Western Australia[C]//Proceedings of Iron Ore.Fremantle:Australasian Institute of Mining and Metallurgy, 2005:9-19.

    Google Scholar

    [17] Morris R C.A textural and mineralogical study of the relationship of iron ore to banded iron formation in the Hamersley Iron Province of Western Australia[J].Economic Geology, 1980, 75:184-209. doi: 10.2113/gsecongeo.75.2.184

    CrossRef Google Scholar

    [18] Morris R C.Genesis of Iron Ore in Banded Iron-formation by Supergene and Super-gene-Metamorphic Processes—A Conceptual Model, in Handbook of Strata-Bound and Stratiform Ore Deposits[M].Elsevier Press, 1985:73-235.

    Google Scholar

    [19] César A C V, Ary B, Ramanaidou E R, et al.Microporosity of BIF hosted massive hematite ore, Iron Quadrangle, Brazi[J].Anais da Academia Brasileira de Ciê ncias, 2002, 74(1):113-126. doi: 10.1590/S0001-37652002000100008

    CrossRef Google Scholar

    [20] 雷义均, 李勇, 姚华舟, 等.苏丹东部地区BIF型铁矿和CID型铁矿的发现及其找矿意义[J].中国地质调查, 2014, 1(1):38-45.

    Google Scholar

    Lei Y J, Li Y, Yao H Z, et al.Discovery of BIF iron ores and CID iron ores in Eastern Sudan and its prospecting significance[J].Geological Survey of China, 2014, 1(1):38-45.

    Google Scholar

    [21] 江思宏, 梁清玲, 聂凤军, 等.西澳皮尔巴拉地区鲸背山铁矿床地质特征与形成规律[J].地质科技情报, 2013, 32(5):95-105.

    Google Scholar

    Jiang S H, Liang Q L, Nie F J, et al.Geological characteristics and metallogeny of the Mount Whaleback iron deposit in Pilbara region, Western Australia[J].Geological Science and Technology Information, 2013, 32(5):95-105.

    Google Scholar

    [22] 吕丽娜, 吴岑.西澳大利亚州铁矿分布规律及矿床成因分析[J].中国煤炭地质, 2013, 25(12):106-111.

    Google Scholar

    Lü L N, Wu C.Iron ore deposit distribution and genetic analysis in Western Australia State [J].Coal Geology of China, 2013, 25(12):106-111.

    Google Scholar

    [23] 冯睿.澳大利亚西北部皮尔巴拉地区Yandi河谷沉积型铁矿岩调研分析[J].当代经济, 2016(3):94-100.

    Google Scholar

    Feng R.Investigation and analysis of Tiekuangyan in Yandi River Valley, Northwest Australia[J].Contemporary Economics, 2016(3):94-100.

    Google Scholar

    [24] Stone M S, George A D, Kneeshaw M, et al.Stratigraphy and sedimentary features of the Tertiary Yandi channel iron deposits, Hamersley Province, Western Australia[C]//Proceedings of Iron Ore Conference.Perth, 2002:137-144.

    Google Scholar

    [25] Ramanaidou E R, Morris R C.Channel iron deposits (CID) of the Hamersley Province (Western Australia)[C]//Proceedings of Iron Ore Conference.Perth, 2007:175-178.

    Google Scholar

    [26] Dalstra H J.From Banded Iron Formation to Iron Ore-Genetic Models and Their Application in Iron Ore Exploration in the Hamersley Province, Western Australia[C]//Proceedings of Iron Ore Conference.Perth, 2011:73-82.

    Google Scholar

    [27] 李厚民, 张作衡.中国铁矿资源特点和科学研究问题[J].岩矿测试, 2013, 32(1):128-130.

    Google Scholar

    Li H M, Zhang Z H.Characteristics of iron ore resources and scientific research in China[J].Rock and Mineral Analysis, 2013, 32(1):128-130.

    Google Scholar

    [28] 班俊生, 任金鑫, 刘桂珍, 等.磁铁矿中磁性物成分的测定及可选性评价[J].岩矿测试, 2013, 32(3):469-473.

    Google Scholar

    Ban J S, Ren J X, Liu G Z, et al.Determination of the magnetic material composition in magnetite ore and processability evaluation[J].Rock and Mineral Analysis, 2013, 32(3):469-473.

    Google Scholar

    [29] 祝宪.携手打造"一带一路"更深融入全球经济——"一带一路"沿线发展中国家的战略机遇[J].中国发展观察, 2016(12):14-15. doi: 10.3969/j.issn.1673-033X.2016.12.006

    CrossRef Google Scholar

    Zhu X.Hand in hand to build 'the belt and road initiative' deeper into global economy—Strategic opportunity of developing countries along 'the belt and road initiative'[J].China Development Review, 2016(12):14-15. doi: 10.3969/j.issn.1673-033X.2016.12.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(2)

Article Metrics

Article views(1512) PDF downloads(22) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint