Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 4
Article Contents

Lin HOU, Ju-xing TANG, Bin LIN, Yang SONG, Qin WANG, Yu-bin LI, Jun FENG, Yan-bo LI, Lie CHEN, Xiao-qian TANG. Element Migration during Alteration and 40Ar/39Ar Dating of Sericite from the Dongwodong Deposit, Tibet and Its Geological Significance[J]. Rock and Mineral Analysis, 2017, 36(4): 440-449. doi: 10.15898/j.cnki.11-2131/td.201612050179
Citation: Lin HOU, Ju-xing TANG, Bin LIN, Yang SONG, Qin WANG, Yu-bin LI, Jun FENG, Yan-bo LI, Lie CHEN, Xiao-qian TANG. Element Migration during Alteration and 40Ar/39Ar Dating of Sericite from the Dongwodong Deposit, Tibet and Its Geological Significance[J]. Rock and Mineral Analysis, 2017, 36(4): 440-449. doi: 10.15898/j.cnki.11-2131/td.201612050179

Element Migration during Alteration and 40Ar/39Ar Dating of Sericite from the Dongwodong Deposit, Tibet and Its Geological Significance

More Information
  • The Dongwodong copper polymetallic deposit is located in the southern margin of Qiangtang terrane, east of the Duolong copper gold ore cluster. The study on the timing of alteration and element migration during the alteration has not yet been conducted. To determine the time of alteration, 40Ar-39Ar isotopic dating was carried out for altered sericites closely related to beresitizate mineralization. The results show that the plateau age is 122.20±0.84 Ma, which is consistent with the age (122 Ma) of ore-bearing porphyry. Thus, there is a close link between the mineralization and granodiorite porphyry. Meanwhile, the geochemical results of weakly-altered and mineralized granodiorite were compared, using the isocon equation and the derivation equation to judge the inclusion or extraction of each element and the element migration during the alteration. Results show that HFSEs are very immobile during the alteration, whereas REEs migrate insignificantly with more obvious migration of LREEs than HREEs. The ore-forming elements (Cu, Pb, Zn) are inclusion elements. The intrusive age of ore-bearing phophyries and the timing of hydrothermal alteration of Dongwodong deposit are consistent with those of other large-superlarge scale copper-gold deposits (Duobuza, Bolong, Tegelongnan) in Duolong copper gold ore cluster, indicating that they were controlled by the same tectonic-magmatic event and thus a great potential of ore-prospecting in Dongwodong mining district can be predicted.
  • 加载中
  • [1] 曲晓明, 辛洪波.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报, 2006, 25(7):792-799.

    Google Scholar

    Qu X M, Xin H B.Ages and tectonic environment of the Bangong Co porphyry copper belt in Western Tibet, China[J].Geological Bulletin of China, 2006, 25(7):792-799.

    Google Scholar

    [2] Li J X, Qin K Z, Li G M, et al.Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenetic belt, Tibet:Evidence from U-Pb and 40Ar/39Ar geochronology[J].Journal of Asian Earth Sciences, 2011, 41(6):525-536. doi: 10.1016/j.jseaes.2011.03.008

    CrossRef Google Scholar

    [3] Li J X, Qin K Z, Li G M, et al.Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet:Evidence from U-Pb geochronology, petrochemistry and Sr-Nd-Hf-O isotope characteristics[J].Lithos, 2013, 160-161:216-227. doi: 10.1016/j.lithos.2012.12.015

    CrossRef Google Scholar

    [4] 孙嘉. 西藏多龙矿集区岩浆成因与成矿作用研究[D]. 北京: 中国地质大学(北京), 2015: 1-198.http://cdmd.cnki.com.cn/Article/CDMD-11415-1015391711.htm

    Google Scholar

    Sun J.Magmatism and Metallogenesis at Duolong Ore District, Tibet[D].Beijing:China University of Geosciences (Beijing), 2015:1-198.

    Google Scholar

    [5] 佘宏全, 李进文, 马东方, 等.西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义[J].矿床地质, 2009, 28(6):737-746.

    Google Scholar

    She H Q, Li J W, Ma D F, et al.Molybdenite Re-Os and SHRIMP zircon U-Pb dating of Duobuza porphyry copper deposit in Tibet and its geological implications[J].Mineral Deposits, 2009, 28(6):737-746.

    Google Scholar

    [6] 祝向平, 陈华安, 马东方, 等.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J].岩石学报, 2011, 27(7):2159-2164.

    Google Scholar

    Zhu X P, Chen H A, Ma D F, et al.Re-Os dating for the molybdenite from Bolong porphyry copper-gold deposit in Tibet, China and its geological significance[J].Acta Petrologica Sinica, 2011, 27(7):2159-2164.

    Google Scholar

    [7] 吕立娜. 西藏班公湖-怒江成矿带西段富铁与铜(金)矿床模型[D]. 北京: 中国地质科学院, 2012: 1-219.http://cdmd.cnki.com.cn/Article/CDMD-82501-1012371246.htm

    Google Scholar

    Lü L N.Metallogenic Model of Rich Iron and Copper (Gold) Deposits in Western Part of Bangong-Nujiang Metallogenic Belt[D].Beijing:Chinese Academy of Geological Sciences, 2012:1-219.

    Google Scholar

    [8] 陈华安, 祝向平, 马东方, 等.西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J].地质学报, 2013, 87(10):1593-1611.

    Google Scholar

    Chen H A, Zhu X P, Ma D F, et al.Geochronology and geochemistry of the Bolong porphyry Cu-Au deposit, Tibet and its mineralizing significance[J].Acta Geologica Sinica, 2013, 87(10):1593-1611.

    Google Scholar

    [9] Lin B, Chen Y C, Tang J X, et al.Geochronology and genesis of the Tiegelongnan porphyry Cu(Au) deposit in Tibet:Evidence from U-Pb, Re-Os dating and Hf, S, and H-O isotopes[J].Resource Geology, 2016, Doi:10.1111/rge.12113.

    CrossRef Google Scholar

    [10] 杨超. 西藏铁格隆南浅成低温热液-斑岩型Cu(Au)矿床矿石、蚀变、流体特征研究[D]. 北京: 中国地质科学院, 2015: 1-77.http://cdmd.cnki.com.cn/Article/CDMD-82501-1015584795.htm

    Google Scholar

    Yang C.Minerals, Alteration and Fluid Characteristics Research of Southern Tiegelong High Sulfidation Epithermal-Porphyry Cu(Au) Deposit, Tibet[D].Beijing:Chinese Academy of Geological Sciences, 2015:1-77.

    Google Scholar

    [11] 方向, 唐菊兴, 宋扬, 等.西藏铁格隆南超大型浅成低温热液铜(金、银)矿床的形成时代及其地质意义[J].地球学报, 2015, 36(2):168-176.

    Google Scholar

    Fang X, Tang J X, Song Y, et al.Formation epoch of the south Tiegelong supelarge epithermal Cu(Au-Ag) deposit in Tibet and its geological implications[J].Acta Geoscientica Sinica, 2015, 36(2):168-176.

    Google Scholar

    [12] 艾金彪, 马生明, 樊连杰, 等.内蒙古乌努格吐山斑岩型铜钼矿床元素迁移定量探讨[J].地球学报, 2013, 34(2):193-202.

    Google Scholar

    Ai J B, Ma S M, Fan L J, et al.A quantitative discussion on element mass migration in the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[J].Acta Geoscientica Sinica, 2013, 34(2):193-202.

    Google Scholar

    [13] 李培, 邓小虎, 陈守余, 等.个旧蚀变岩型铜多金属矿床围岩蚀变过程中元素迁移定量研究[J].地质找矿论丛, 2011, 26(2):176-181.

    Google Scholar

    Li P, Deng X H, Chen S Y, et al.Quantitative study of elements migration during the wallrock alteration on Gejiu altered rock-type copper-polymetallic deposit[J].Contributions to Geology and Mineral Resources Research, 2011, 26(2):176-181.

    Google Scholar

    [14] 林彬, 陈毓川, 唐菊兴, 等.藏北东窝东铜多金属矿床含矿斑岩年代学、Sr-Nd-Pb同位素及勘查找矿方向[J].地质学报, 2017(待刊).

    Google Scholar

    Lin B, Chen Y C, Tang J X, et al.Geochronology and Sr-Nd-Pb isotopic geochemistry of ore-bearing porphyry, and exploration direction, Dongwodong copper polymetallic deposit, North Tibet[J].Acta Geologica Sinica, 2017(in press).

    Google Scholar

    [15] 陈文, 刘新宇, 张思红.连续激光阶段升温40Ar/39Ar地质年代测定方法研究[J].地质论评, 2002, 48(增刊):127-134.

    Google Scholar

    Chen W, Liu X Y, Zhang S H.Continuous laser stepwise heating 40Ar/39Ar dating technique[J].Geological Review, 2002, 48(Supplement):127-134.

    Google Scholar

    [16] 韦少港, 唐菊兴, 宋扬, 等.西藏班公湖-怒江成矿带斑岩-浅成低温热液型矿床岩浆作用与成矿:以改则县东窝东铜多金属矿床为例[J].现代地质, 2016, 30(6):1179-1196.

    Google Scholar

    Wei S G, Tang J X, Song Y, et al.Magmatism and mineralization of epithermal-porphyry deposit from Bangonghu-Nujiang metallogenic belt:Taking Dongwodong copper deposit from Gerze city for example[J].Geosciences, 2016, 30(6):1179-1196.

    Google Scholar

    [17] Liu Y, Hu Z, Gao S, et al.In situ, analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [18] Gresens R L.The effect of structurally produced pressure gradients on diffusion in rocks[J].Journal of Geology, 1966, 74(3):307-321. doi: 10.1086/627165

    CrossRef Google Scholar

    [19] Grant J A.The isocon diagram-A simple solution to Gresens' equation for metasomatic alteration[J].Economic Geology, 1986, 81(8):1976-1982. doi: 10.2113/gsecongeo.81.8.1976

    CrossRef Google Scholar

    [20] 周永章, 涂光炽, Chown E H, 等.热液围岩蚀变过程中数学不变量的寻找及元素迁移的定量估计——以广东河台金矿田为例[J].科学通报, 1994, 39(11):1026-1028.

    Google Scholar

    Zhou Y Z, Tu G Z, Chown E H, et al.Search for the mathematical invariants and quantitative estimates of mass transfer during the hydrothermal rock alteration-A case study of Guangdong Hetai gold field[J].Chinese Science Bulletin, 1994, 39(11):1026-1028.

    Google Scholar

    [21] 翟裕生, 姚书振, 蔡克勤.矿床学(第3版)[M].北京:地质出版社, 2011.

    Google Scholar

    Zhai Y S, Yao S Z, Cai K Q.Mineral Deposits (3rd Edition)[M].Beijing:Geological Publishing House, 2011.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(1904) PDF downloads(104) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint