Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2017 Vol. 36, No. 4
Article Contents

He-ling WANG, Guang-yi LI, Shao-peng QU, Yu-ping QIAN, Xiu-mei QIU, Xue-lin DONG. Determination of Volatile and Nonvolatile Trace Elements in Geochemical Samples by Fluoride Solid Buffer-AC Arc Direct Reading Emission Spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 367-373. doi: 10.15898/j.cnki.11-2131/td.201608230125
Citation: He-ling WANG, Guang-yi LI, Shao-peng QU, Yu-ping QIAN, Xiu-mei QIU, Xue-lin DONG. Determination of Volatile and Nonvolatile Trace Elements in Geochemical Samples by Fluoride Solid Buffer-AC Arc Direct Reading Emission Spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 367-373. doi: 10.15898/j.cnki.11-2131/td.201608230125

Determination of Volatile and Nonvolatile Trace Elements in Geochemical Samples by Fluoride Solid Buffer-AC Arc Direct Reading Emission Spectrometry

More Information
  • It is not necessary to digest a sample if it is determined by Arc Direct Reading Emission Spectrometry, and multiple elements can be simultaneously determined by solid injection. Currently used geochemical solid buffers, such as potassium persulfate and sodium fluoride have a low temperature arc flame, and can only analyze silver, boron, tin, molybdenum, lead, copper and other volatile elements but cannot analyze chromium, manganese, titanium and other high boiling point elements. Alkali metal was used to control the low arc temperature, and a solid buffer composed of aluminum fluoride, PCTFE and other high efficiency fluorination compounds was prepared based on the fact that the reaction between difficult volatile elements and fluorine ion under high temperature would have lower excitation energy. By optimizing the choice of line pairs, exposure time, electrode shape and other analysis conditions, 14 volatile and non-volatile elements in the geochemical samples can be simultaneously analyzed. The detection limit of the method ranges from 0.016 to 46.93 μg/g, and the relative standard deviation is 4.1% to 12.3%. The accuracy was verified by national standard material. The results were in accordance with the standard values, and the parameters meet the requirements of geochemical census. The method has high analysis efficiency and is practical in geochemical analysis.
  • 加载中
  • [1] 徐国栋, 葛建华, 金斌, 等.X射线荧光光谱法与电感耦合等离子体-原子发射光谱法联用测定土壤、水系沉积物、岩石中21种主、次痕量元素[J].光谱实验室, 2011, 28(1):1-6.

    Google Scholar

    Xu G D, Ge J H, Jin B, et al.Determination of 21 major, minor and trace elements in soil, stream sediment and rock by X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry[J].Chinese Journal of Spectroscopy Laboratory, 2011, 28(1):1-6.

    Google Scholar

    [2] 刘亮, 周丽萍, 李中玺, 等.ICP-OES测定土壤、岩石及水系沉积物中的19中微量元素[J].光谱实验室, 2013, 30(5):2184-2187.

    Google Scholar

    Liu L, Zhou L P, Li Z X, et al.Determination of trace elements in soil, rock and water sediments by ICP-OES[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(5):2184-2187.

    Google Scholar

    [3] Moorl C, Lymberopoulou T, Dietrich V J.Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS[J].Mikrochimica Acta, 2001, 136:123-128. doi: 10.1007/s006040170041

    CrossRef Google Scholar

    [4] 刘峰, 秦樊鑫, 胡继伟, 等.不同混合酸消解样品对电感耦合等离子体原子发射光谱法测定土壤中重金属含量的影响[J].理化检验(化学分册), 2011, 47(8):951-954.

    Google Scholar

    Liu F, Qin F X, Hu J W, et al.Effects of different acid mixtures for sample digestion on the ICP-AES determination of heavy metal elements in soil[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(8):951-954.

    Google Scholar

    [5] 赵玲, 冯永明, 李胜生, 等.碱熔-电感耦合等离子体质谱法测定化探样品中硼和锡[J].岩矿测试, 2010, 29(4):355-358.

    Google Scholar

    Zhao L, Feng Y M, Li S S, et al.Determination of boron and tin in geochemical exploration samples by inductively coupled plasma-mass spectrometry with alkali fusion sample preparation[J].Rock and Mineral Analysis, 2010, 29(4):355-358.

    Google Scholar

    [6] 乐叔葵, 段永梅.电感耦合等离子体质谱法(ICP-MS)测定土壤中重金属元素[J].中国无机分析化学, 2015, 5(3):16-19.

    Google Scholar

    Le S K, Duan Y M.Determination of heavy metal elements in soil by ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3):16-19.

    Google Scholar

    [7] 赵如琳, 李宏萍, 王骏峰, 等.氢化物发生-原子荧光光谱法测定地质试样中锡[J].分析试验室, 2016, 35(10):1227-1231.

    Google Scholar

    Zhao R L, Li H P, Wang J F, et al.Determination of tin in geological samples using hydride genetarion-atomic fluorescence spectrometry[J].Chinese Journal of Analysis Laboratory, 2016, 35(10):1227-1231.

    Google Scholar

    [8] 徐鹏, 王青柏, 姜雅红.固体进样-石墨炉原子吸收光谱法测定土壤中重金属[J].分析试验室, 2015, 34(5):554-557.

    Google Scholar

    Xu P, Wang Q B, Jiang Y H.Direct determination of heavy metals in soil by graphite furnace atomic absorption spectrometry with solid sampling[J].Chinese Journal of Analysis Laboratory, 2015, 34(5):554-557.

    Google Scholar

    [9] 杨晓婧, 李美丽, 白建华.火焰原子吸收光谱法测定废水中的重金属离子[J].光谱实验室, 2010, 27(1):247-249.

    Google Scholar

    Yang X J, Li M L, Bai J H.Determination of heavy metal ions in waste water by the flame atomic absorption spectrometry[J].Chinese Journal of Spectroscopy Laboratory, 2010, 27(1):247-249.

    Google Scholar

    [10] Pan L, Qin Y C, Hu B, et al.Determination of nickel and palladium in environmental samples by low temperature ETV-ICP-OES coupled with liquid-liquid extraction with dimethylglyoxime as both extractant and chemical modifier[J].Chemical Research in Chinese Universities, 2007, 23(4):399-403. doi: 10.1016/S1005-9040(07)60086-5

    CrossRef Google Scholar

    [11] Wanlau R, Hu B, Jiang Z C, et al.Determination of trace metal impurities in cerium oxide by fluorination-assisted ETV-ICP-AES after HPLC separation[J].Journal of Rare Earths, 2004, 22(2):197-200.

    Google Scholar

    [12] Vogt T, Bauer D, Neuroth M, et al.Quantitative multi-element analysis of argonne premium coal samples by ETV-ICP-OES-A highly efficient direct analytical technique for inorganics in coal[J].Fuel, 2015, 152:96-102. doi: 10.1016/j.fuel.2014.12.057

    CrossRef Google Scholar

    [13] 潘亮, 秦永超, 胡斌, 等.以DDTP为化学改进剂, 低温电热蒸发ICP-OES测定环境样品中的钴和镍[J].分析试验室, 2006, 25(8):45-49.

    Google Scholar

    Pan L, Qin Y C, Hu B, et al.Determination Co and Ni in environmental samples by low temperature electrothermal vaporization inductively couples plasma optical emission spectrometry using diethyldithiophpsphate (DDTP) as a chemical modifier[J].Chinese Journal of Analysis Laboratory, 2006, 25(8):45-49.

    Google Scholar

    [14] Asfaw A, Beauchemin D.Combination of a multimode sample introduction system with a pre-evaporation tube to improve multi-element analysis by ICP-OES[J].Journal of Analytical Atomic Spectrometry, 2012, 27(1):80-91. doi: 10.1039/C1JA10224A

    CrossRef Google Scholar

    [15] 李科学, 周卫东, 沈沁梅, 等.激光烧蚀-快脉冲放电等离子体光谱技术分析土壤中的Sn[J].光谱学与光谱分析, 2011, 31(8):2249-2252.

    Google Scholar

    Li K X, Zhou W D, Shen Q M, et al.Laser ablation and fast pulse discharge plasma spectroscopy analysis of Sn in soil[J].Spectroscopy and Spectral Analysis, 2011, 31(8):2249-2252.

    Google Scholar

    [16] 江祖成, 胡斌, 黄敏, 等.稀土元素的氟化辅助电热蒸发-等离子体光谱分析及蒸发机理研究[J].稀土, 1993, 15(6):23-29.

    Google Scholar

    Jiang Z C, Hu B, Huang M, et al.Study on fluorination auxiliary electrothermal evaporation-ICP-AES and evaporation mechanism of rare earth elements[J].Chinese Rare Earth, 1993, 15(6):23-29.

    Google Scholar

    [17] 李胜清, 胡斌, 江祖成.用ETV-ICP-MS研究Cr、Ni、Zr、Nb、Yb在石墨炉中的蒸发/原子化机理[J].分析科学学报, 2005, 21(5):473-480.

    Google Scholar

    Li S Q, Hu B, Jiang Z C.Investigation of the vaporization and atomization mechanisms of Cr, Ni, Zr, Nb and Yb in graphite furnace by ETV-ICP-MS[J].Journal of Analytical Science, 2005, 21(5):473-480.

    Google Scholar

    [18] 张雪梅, 张勤.发射光谱法测定勘查地球化学样品中银硼锡钼铅[J].岩矿测试, 2006, 25(4):323-326.

    Google Scholar

    Zhang X M, Zhang Q.Determination of sliver, boron, tin, molybdenum and lead in geochemical exploration samples by emission spectrometry[J].Rock and Mineral Analysis, 2006, 25(4):323-326.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(1959) PDF downloads(77) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint