Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 5
Article Contents

Shuai ZHU, Ya-ting SHEN, Jing JIA, Qin TIAN. Review on the Analytical Methods of Typical Emerging Organic Pollutants in the Environment[J]. Rock and Mineral Analysis, 2018, 37(5): 586-606. doi: 10.15898/j.cnki.11-2131/td.201603300054
Citation: Shuai ZHU, Ya-ting SHEN, Jing JIA, Qin TIAN. Review on the Analytical Methods of Typical Emerging Organic Pollutants in the Environment[J]. Rock and Mineral Analysis, 2018, 37(5): 586-606. doi: 10.15898/j.cnki.11-2131/td.201603300054

Review on the Analytical Methods of Typical Emerging Organic Pollutants in the Environment

  • BACKGROUND Persistent organic pollutants (POPs), pharmaceuticals, personal care products (PPCPs) and disinfection by products (DBPs) have raised significant concerns for their potential ecological threat to the environment and human health. Research on their source, detection method, environmental distribution, migration and transformation has become the hot topic. OBJECTIVES To introduce recent analytical techniques and applications for the determination of POPs, PPCPs and DBPs in environmental and biota samples, and summarize the extraction, separation and instrumental analyses of the halogenated emerging organic pollutants. To discuss future trends for improving the POPs, PPCPs and DBPs analyses and potential emerging organic pollutants. METHODS In recent years the analytical techniques for emerging organic pollutants have made great progress. According to the nature of samples, a variety of extraction methods have been used, such as accelerated solvent extraction and solid phase microextraction. Effective clean-up steps include GPC, multi-layer column and SPE. Conventional analytical methods of emerging organic pollutants have been based mainly on GC-ECD. With the fast development of chromatography and mass spectrometry, congener-specific analysis has become a mainstream method. The analysis of certain emerging organic pollutants at trace levels is now a routine due to the advancement of HRGC-HRMS. RESULTS Methods for the analysis of emerging organic pollutants in a variety of environmental, biota and food matrices have been well developed during the past several decades. However, the analytical challenge still remains for a direct analysis of emerging pollutants. For example, short chain chlorinated paraffin has more than 7000 kinds of congeners. The traditional analytical methods cannot achieve their separation, and accurate qualitative and quantitative analysis of these pollutants is challenging. CONCLUSIONS The analytical technique for emerging organic pollutants still has a long way to go. On the one hand, it is necessary to explore effective pretreatment techniques such as magnetic solid-phase matrix dispersion extraction technology to reduce the possible interference. On the other hand, it is necessary to improve the recognition, sensitivity, accuracy and practicability of chromatographic mass spectrometry techniques such as comprehensive Two-dimensional Gas Chromatography and Fourier Transform Mass Spectrometry and develop a simple and standard quantitative method.
  • 加载中
  • [1] Sharma B M, Bharat G K, Tayal S, et al.Environment and human exposure to persistent organic pollutants (POPs) in India:A systematic review of recent and historical data[J].Environment International, 2014, 66:48-64. doi: 10.1016/j.envint.2014.01.022

    CrossRef Google Scholar

    [2] Liu J L, Wong M H.Pharmaceuticals and personal care products (PPCPs):A review on environmental contamination in China[J].Environment International, 2013, 59:208-224. doi: 10.1016/j.envint.2013.06.012

    CrossRef Google Scholar

    [3] Liu J, Zhang X.Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a Marine Alga:Halophenolic DBPs are generally more toxic than haloaliphatic ones[J].Water Research, 2014, 65:64-72. doi: 10.1016/j.watres.2014.07.024

    CrossRef Google Scholar

    [4] Harmens H, Foan L, Simon V, et al.Terrestrial mosses as biomonitors of atmospheric POPs pollution:A review[J].Environmental Pollution, 2013, 173:245-254. doi: 10.1016/j.envpol.2012.10.005

    CrossRef Google Scholar

    [5] Grellier J, Rushton L, Briggs D J, et al.Assessing the human health impacts of exposure to disinfection by-products-A critical review of concepts and methods[J].Environment International, 2015, 78:61-81. doi: 10.1016/j.envint.2015.02.003

    CrossRef Google Scholar

    [6] Zhu Z C, Chen S J, Zheng J, et al.Occurrence of bro-minated flame retardants (BFRs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) in agricultural soils in a BFR-manufacturing region of North China[J].Science of The Total Environment, 2014, 481:47-54. doi: 10.1016/j.scitotenv.2014.02.023

    CrossRef Google Scholar

    [7] Zhi H, Zhao Z, Zhang L.The fate of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in water from Poyang Lake, the largest freshwater lake in China[J].Chemosphere, 2015, 119:1134-1140. doi: 10.1016/j.chemosphere.2014.09.054

    CrossRef Google Scholar

    [8] Zhao H, Wang Y, Wang R.In situ formation of well-dispersed palladium nanoparticles immobilized in imidazolium-based organic ionic polymers[J].Chemical Communications, 2014, 50(74):10871-10874. doi: 10.1039/C4CC04662E

    CrossRef Google Scholar

    [9] Tian Z, Li H, Xie H, et al.Concentration and distribution of PCNs in ambient soil of a municipal solid waste incinerator[J].Science of the Total Environment, 2014, 491-492:75-79. doi: 10.1016/j.scitotenv.2013.12.130

    CrossRef Google Scholar

    [10] Noguera O K, Aga D S.Lessons learned from more than two decades of research on emerging contaminants in the environment[J].Journal of Hazardous Materials, 2016, 316:242-251. doi: 10.1016/j.jhazmat.2016.04.058

    CrossRef Google Scholar

    [11] Wu Q Y, Tang X, Huang H, et al.Antiestrogenic activity and related disinfection by-product formation induced by bromide during chlorine disinfection of sewage secondary effluent[J].Journal of Hazardous Materials, 2014, 273:280-286. doi: 10.1016/j.jhazmat.2014.03.028

    CrossRef Google Scholar

    [12] Sun Q, Lü M, Hu A, et al.Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China[J].Journal of Hazardous Materials, 2014, 277:69-75. doi: 10.1016/j.jhazmat.2013.11.056

    CrossRef Google Scholar

    [13] Salihovic S, Nilsson H, Hagberg J, et al.Trends in the analysis of persistent organic pollutants (POPs) in human blood[J].TrAC Trends in Analytical Chemistry, 2013, 46:129-138. doi: 10.1016/j.trac.2012.06.009

    CrossRef Google Scholar

    [14] Barghi M, Shin E S, Choi S D, et al.HBCD and TBBPA in human scalp hair:Evidence of internal exposure[J].Chemosphere, 2018, 207:70-77. doi: 10.1016/j.chemosphere.2018.05.032

    CrossRef Google Scholar

    [15] Mannetje A, Coakley J, Mueller J F, et al.Partitioning of persistent organic pollutants (POPs) between human serum and breast milk:A literature review[J].Chemosphere, 2012, 89(8):911-918. doi: 10.1016/j.chemosphere.2012.06.049

    CrossRef Google Scholar

    [16] Lagalante A F, Oswald T D.Analysis of Polybrominated diphenyl ethers (PBDEs) by liquid chromatography with negative-ion atmospheric pressure photoionization tandem mass spectrometry (LC/NI-APPI/MS/MS):Application to house dust[J].Analytical and Bioanalytical Chemistry, 2008, 391(6):2249-2256. doi: 10.1007/s00216-008-2156-z

    CrossRef Google Scholar

    [17] Shin M, Svoboda M L, Falletta P.Microwave-assisted extraction (MAE) for the determination of polybrominated diphenylethers (PBDEs) in sewage sludge[J].Analytical and Bioanalytical Chemistry, 2007, 387(8):2923-2929. doi: 10.1007/s00216-007-1168-4

    CrossRef Google Scholar

    [18] Wei H, Dassanayake P S, Li A.Parametric evaluation for programmable temperaturevaporisation large volume injection in gas chromatographic determination of polybrominated diphenyl ethers[J].International Journal of Environmental Analytical Chemistry, 2010, 90(7):535-547. doi: 10.1080/03067310902871299

    CrossRef Google Scholar

    [19] Mackintosh S A, Pérez-Fuentetaja A, Zimmerman L R, et al.Analytical performance of a triple quadrupole mass spectrometer compared to a high resolution mass spectrometer for the analysis of polybrominated diphenyl ethers in fish[J].Analytica Chimica Acta, 2012, 747:67-75. doi: 10.1016/j.aca.2012.08.021

    CrossRef Google Scholar

    [20] Pizzini S, Marchiori E, Piazza R, et al.Determination by HRGC/HRMS of PBDE levels in edible mediterranean bivalves collected from North-Western Adriatic Coasts[J].Microchemical Journal, 2015, 121:184-191. doi: 10.1016/j.microc.2015.03.010

    CrossRef Google Scholar

    [21] Parry E, Zota A R, Park J S, et al.Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs):A six-year temporal trend in Northern California pregnant women[J].Chemosphere, 2018, 195:777-783. doi: 10.1016/j.chemosphere.2017.12.065

    CrossRef Google Scholar

    [22] van den Berg M, Houba R, Leslie H A, et al.Serum levels of decabromodiphenyl ether (BDE-209) in women from different European countries and possible relationships with lifestyle and diet[J].Environment International, 2017, 107:16-24. doi: 10.1016/j.envint.2017.06.014

    CrossRef Google Scholar

    [23] Chaemfa C, Xu Y, Li J, et al.Screening of atmospheric short-and medium-chain chlorinated paraffins in India and Pakistan using polyurethane foam based passive air sampler[J].Environmental Science & Technology, 2014, 48(9):4799-4808.

    Google Scholar

    [24] Ma X, Zhang H, Zhou H, et al.Occurrence and gas/particle partitioning of short-and medium-chain chlorinated paraffins in the atmosphere of Fildes Peninsula of Antarctica[J].Atmospheric Environment, 2014, 90:10-15. doi: 10.1016/j.atmosenv.2014.03.021

    CrossRef Google Scholar

    [25] Zeng L, Wang T, Wang P, et al.Distribution and trophic transfer of short-chain chlorinated paraffins in an aquatic ecosystem receiving effluents from a sewage treatment plant[J].Environmental Science & Technology, 2011, 45(13):5529-5535.

    Google Scholar

    [26] Moore S, Vromet L, Rondeau B.Comparison of metasta-ble atom bombardment and electron capture negative ionization for the analysis of polychloroalkanes[J].Chemosphere, 2004, 54(4):453-459. doi: 10.1016/S0045-6535(03)00709-4

    CrossRef Google Scholar

    [27] Wang X T, Wang X K, Zhang Y, et al.Short-and medi-um chain chlorinated paraffins in urban soils of Shanghai:Spatial distribution, homologue group patterns and ecological risk assessment[J].Science of the Total Environment, 2014, 490:144-152. doi: 10.1016/j.scitotenv.2014.04.121

    CrossRef Google Scholar

    [28] Zeng L, Wang T, Han W, et al.Spatial and vertical dis-tribution of short chain chlorinatedparaffins in soils from wastewater irrigated farmlands[J].Environmental Science & Technology, 2011, 45(6):2100-2106.

    Google Scholar

    [29] Nilsson M L, Bengtsson S, Kylin H.Identification and determination of chlorinated paraffins using multivariate evaluation of gas chromatographic data[J].Environmental Pollution, 2012, 163:142-148. doi: 10.1016/j.envpol.2011.12.010

    CrossRef Google Scholar

    [30] Ma X, Zhang H, Wang Z, et al.Bioaccumulation and tro-phic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay, North China[J].Environmental Science & Technology, 2014, 48(10):5964-5971.

    Google Scholar

    [31] Xia D, Gao L, Zheng M, et al.A novel method for pro-filing and quantifying short-and medium-chain chlorinated paraffins in environmental samples using GC×GC-ECNI-HRTOF-MS[J].Environmental Science & Technology, 2016, 50:7601-7609.

    Google Scholar

    [32] Zencak Z, Borgen A, Reth M, et al.Evaluation of four mass spectrometric methods for the gas chromatographic analysis of polychlorinated N-alkanes[J].Journal of Chromatography A, 2005, 1067(1):295-301.

    Google Scholar

    [33] Harada K H, Takasuga T, Hitomi T, et al.Dietary expo-sure to short-chain chlorinated paraffins has increased in Beijing, China[J].Environmental Science & Technology, 2011, 45(16):7019-7027.

    Google Scholar

    [34] Saito K, Uemura E, Ishizaki A, et al.Determination of perfluorooctanoic acid and perfluorooctane sulfonate by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry[J].Analytica Chimica Acta, 2010, 658(2):141-146. doi: 10.1016/j.aca.2009.11.004

    CrossRef Google Scholar

    [35] Loos R, Tavazzi S, Paracchini B, et al.Analysis of polar organic contaminants in surface water of the Northern Adriatic Sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography-Qtrap® MS using a hybrid triple-quadrupole linear ion trap instrument[J].Analytical and Bioanalytical Chemistry, 2013, 405(18):5875-5885. doi: 10.1007/s00216-013-6944-8

    CrossRef Google Scholar

    [36] Cao D, Hu M, Han C, et al.Proton sponge-functionalized silica as high performance adsorbents for solid-phase extraction of trace perfluoroalkyl sulfonates in the environmental water samples and their direct analysis by MALDI-TOF-MS[J].Analyst, 2012, 137(9):2218-2225. doi: 10.1039/c2an16190g

    CrossRef Google Scholar

    [37] Li F, Zhang C, Qu Y, et al.Quantitative characterization of short-and long-chain perfluorinated acids in solid matrices in Shanghai, China[J].Science of The Total Environment, 2010, 408(3):617-623. doi: 10.1016/j.scitotenv.2009.10.032

    CrossRef Google Scholar

    [38] Letcher R J, Chu S, McKinney M A, et al.Comparative hepatic in vitro depletion and metabolite formation of major perfluorooctane sulfonate precursors in Arctic Polar Bear, Beluga Whale, and Ringed Seal[J].Chemosphere, 2014, 112:225-231. doi: 10.1016/j.chemosphere.2014.04.022

    CrossRef Google Scholar

    [39] Greaves A K, Letcher R J, Sonne C, et al.Brain region distribution and patterns of bioaccumulative perfluoroalkyl carboxylates and sulfonates in East Greenland Polar Bears (Ursus Maritimus)[J].Environmental Toxicology and Chemistry, 2013, 32(3):713-722. doi: 10.1002/etc.2107

    CrossRef Google Scholar

    [40] Rivière G, Sirot V, Tard A, et al.Food risk assessment for perfluoroalkyl acids and brominated flame retardants in the french population:Results from the second french total diet study[J].Science of The Total Environment, 2014, 491-492:176-183. doi: 10.1016/j.scitotenv.2014.01.104

    CrossRef Google Scholar

    [41] Zhang T, Qin X.Assessment of fetal exposure and mater-nal elimination of perfluoroalkyl substances[J].Environmental Science:Processes & Impacts, 2014, 16(8):1878-1881.

    Google Scholar

    [42] Zhang Y, Beesoon S, Zhu L, et al.Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life[J].Environmental Science & Technology, 2013, 47(18):10619-10627.

    Google Scholar

    [43] Muñoz A J, Roscales J L, Ros M, et al.Towards the implementation of the stockholm convention in Spain:Five-year monitoring (2008-2013) of POPs in air based on passive sampling[J].Environmental Pollution, 2016, 217:107-113. doi: 10.1016/j.envpol.2016.01.052

    CrossRef Google Scholar

    [44] Gao Q, Budarin V L, Cieplik M, et al.PCDDs, PCDFs and PCNs in products of microwave-assisted pyrolysis of woody biomass-distribution among solid, liquid and gaseous phases and effects of material composition[J].Chemosphere, 2016, 145:193-199. doi: 10.1016/j.chemosphere.2015.11.110

    CrossRef Google Scholar

    [45] Fournier A, Rychen G, Marchand P, et al.Polychlorina-ted biphenyl (PCB) decontamination kinetics in lactating goats (Capra Hircus) following a contaminated corn silage exposure[J].Journal of Agricultural and Food Chemistry, 2013, 61(29):7156-7164. doi: 10.1021/jf401048j

    CrossRef Google Scholar

    [46] Muir D, Lohmann R.Water as a new matrix for global assessment of hydrophilic POPs[J].TrAC Trends in Analytical Chemistry, 2013, 46:162-172. doi: 10.1016/j.trac.2012.12.019

    CrossRef Google Scholar

    [47] Król S, Zabiegała B, Namies'nik J.Human hair as a biomarker of human exposure to persistent organic pollutants (POPs)[J].TrAC Trends in Analytical Chemistry, 2013, 47:84-98. doi: 10.1016/j.trac.2013.02.010

    CrossRef Google Scholar

    [48] Wang X, Wang J, Jiao C, et al.Retracted:Preparation of magnetic mesoporous poly-melamine-formaldehyde composite for efficient extraction of chlorophenols[J].Talanta, 2018, 179:676-684. doi: 10.1016/j.talanta.2017.12.002

    CrossRef Google Scholar

    [49] Diao C, Li C, Yang X, et al.Magnetic matrix solid phase dispersion assisted dispersive liquid liquid microextraction of ultra trace polychlorinated biphenyls in water prior to GC-ECD determination[J].Microchimica Acta, 2016, 183(3):1261-1268. doi: 10.1007/s00604-016-1761-3

    CrossRef Google Scholar

    [50] Abhilash P C, Singh B, Srivastava P, et al.Remediation of lindane by Jatropha curcas L:Utilization of multipurpose species for rhizoremediation[J].Biomass and Bioenergy, 2013, 51:189-193. doi: 10.1016/j.biombioe.2013.01.028

    CrossRef Google Scholar

    [51] McManus S L, Coxon C E, Richards K G, et al.Quanti-tative solid phase microextraction-gas chromatography mass spectrometry analysis of the pesticides lindane, heptachlor and two heptachlor transformation products in groundwater[J].Journal of Chromatography A, 2013, 1284:1-7. doi: 10.1016/j.chroma.2013.01.099

    CrossRef Google Scholar

    [52] Marek R F, Thorne P S, Wang K, et al.PCBs and OH-PCBs in serum from children and mothers in urban and rural U.S.communities[J].Environmental Science & Technology, 2013, 47(7):3353-3361.

    Google Scholar

    [53] Besis A, Samara C.Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments-A review on occurrence and human exposure[J].Environmental Pollution, 2012, 169:217-229. doi: 10.1016/j.envpol.2012.04.009

    CrossRef Google Scholar

    [54] Berton P, Lana N B, Ríos J M, et al.State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples:A critical review[J].Analytica Chimica Acta, 2016, 905:24-41. doi: 10.1016/j.aca.2015.11.009

    CrossRef Google Scholar

    [55] Giandomenico S, Spada L, Annicchiarico C, et al.Chlorinated compounds and polybrominated diphenyl ethers (PBDEs) in mussels (mytilus galloprovincialis) collected from Apulia Region Coasts[J].Marine Pollution Bulletin, 2013, 73(1):243-251. doi: 10.1016/j.marpolbul.2013.05.013

    CrossRef Google Scholar

    [56] van Mourik L M, Gaus C, Leonards P E G, et al.Chlori-nated paraffins in the environment:A review on their production, fate, levels and trends between 2010 and 2015[J].Chemosphere, 2016, 155:415-428. doi: 10.1016/j.chemosphere.2016.04.037

    CrossRef Google Scholar

    [57] Geng N, Zhang H, Zhang B, et al.Effects of short-chain chlorinated paraffins exposure on the viability and metabolism of human Hepatoma Hepg2 cells[J].Environmental Science & Technology, 2015, 49(5):3076-3083.

    Google Scholar

    [58] Gao W, Cao D, Wang Y, et al.External exposure to short-and medium-chain chlorinated paraffins for the general population in Beijing, China[J].Environmental Science & Technology, 2018, 52(1):32-39.

    Google Scholar

    [59] Wang T, Wang Y, Jiang G.On the environmental health effects and socio-economic considerations of the potential listing of short-chain chlorinated paraffins into the stockholm convention on persistent organic pollutants[J].Environmental Science & Technology, 2013, 47(21):11924-11925.

    Google Scholar

    [60] Gjoes N, Gustavsen K O.Determination of chlorinated paraffins by negative ion chemical ionization mass spectrometry[J].Analytical Chemistry, 1982, 54(8):1316-1318. doi: 10.1021/ac00245a014

    CrossRef Google Scholar

    [61] Schinkel L, Lehner S, Knobloch M, et al.Transformation of chlorinated paraffins to olefins during metal work and thermal exposure-Deconvolution of mass spectra and kinetics[J].Chemosphere, 2018, 194:803-811. doi: 10.1016/j.chemosphere.2017.11.168

    CrossRef Google Scholar

    [62] Zafeiraki E, Costopoulou D, Vassiliadou I, et al.Deter-mination of perfluorinated compounds (PFCs) in various foodstuff packaging materials used in the greek market[J].Chemosphere, 2014, 94:169-176. doi: 10.1016/j.chemosphere.2013.09.092

    CrossRef Google Scholar

    [63] Kowalczyk J, Ehlers S, Oberhausen A, et al.Absorption, distribution, and milk secretion of the perfluoroalkyl acids PFBS, PFHXS, PFOS, and PFOA by dairy cows fed naturally contaminated feed[J].Journal of Agricultural and Food Chemistry, 2013, 61(12):2903-2912. doi: 10.1021/jf304680j

    CrossRef Google Scholar

    [64] Zhu P, Ling X, Liu W, et al.Simple and fast determi-nation of perfluorinated compounds in Taihu Lake by SPE-UHPLC-MS/MS[J].Journal of Chromatography B, 2016, 1031:61-67. doi: 10.1016/j.jchromb.2016.07.031

    CrossRef Google Scholar

    [65] Urtiaga A, Soriano A, Carrillo-Abad J.Bdd anodic treat-ment of 6:2 fluorotelomer sulfonate (6:2 FTSA).Evaluation of operating variables and by-product formation[J].Chemosphere, 2018, 201:571-577. doi: 10.1016/j.chemosphere.2018.03.027

    CrossRef Google Scholar

    [66] Xie S, Paau M C, Li C F, et al.Separation and precon-centration of persistent organic pollutants by cloud point extraction[J].Journal of Chromatography A, 2010, 1217(16):2306-2317. doi: 10.1016/j.chroma.2009.11.075

    CrossRef Google Scholar

    [67] Zhu S, Gao L, Zheng M, et al.Determining indicator toxa-phene congeners in soil using comprehensive two-dimensional gas chromatography-tandem mass spectrometry[J].Talanta, 2014, 118:210-216. doi: 10.1016/j.talanta.2013.09.044

    CrossRef Google Scholar

    [68] Xia D, Gao L, Zhu S, et al.Separation and screening of short-chain chlorinated paraffins in environmental samples using comprehensive two-dimensional gas chromatography with micro electron capture detection[J].Analytical and Bioanalytical Chemistry, 2014, 406(29):7561-7570. doi: 10.1007/s00216-014-8209-6

    CrossRef Google Scholar

    [69] 王丹, 隋倩, 赵文涛, 等.中国地表水环境中药物和个人护理品的研究进展[J].科学通报, 2014, 59(9):743-751.

    Google Scholar

    [70] Carvalho I T, Santos L.Antibiotics in the aquatic en-vironments:A review of the European Scenario[J].Environment International, 2016, 94:736-757. doi: 10.1016/j.envint.2016.06.025

    CrossRef Google Scholar

    [71] Munro K, Miller T H, Martins C P B, et al.Artificial neural network modelling of pharmaceutical residue retention times in wastewater extracts using gradient liquid chromatography-high resolution mass spectrometry data[J].Journal of Chromatography A, 2015, 1396:34-44. doi: 10.1016/j.chroma.2015.03.063

    CrossRef Google Scholar

    [72] McEachran A D, Shea D, Bodnar W, et al.Pharma-ceutical occurrence in groundwater and surface waters in forests land-applied with municipal wastewater[J].Environmental Toxicology and Chemistry, 2016, 35(4):898-905. doi: 10.1002/etc.3216

    CrossRef Google Scholar

    [73] Kleywegt S, Pileggi V, Yang P, et al.Pharmaceuticals, hormones and bisphenol a in untreated source and finished drinking water in Ontario, Canad-Occurrence and treatment efficiency[J].Science of the Total Environment, 2011, 409(8):1481-1488. doi: 10.1016/j.scitotenv.2011.01.010

    CrossRef Google Scholar

    [74] Sui Q, Cao X, Lu S, et al.Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater:A review[J].Emerging Contaminants, 2015, 1(1):14-24. doi: 10.1016/j.emcon.2015.07.001

    CrossRef Google Scholar

    [75] Fridman O, Goldberg A, Ronin I, et al.Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations[J].Nature, 2014, 513(7518):418-421. doi: 10.1038/nature13469

    CrossRef Google Scholar

    [76] Li X, Zheng W, Kelly W R.Occurrence and removal of pharmaceutical and hormone contaminants in rural wastewater treatment Lagoons[J].Science of The Total Environment, 2013, 445-446:22-28. doi: 10.1016/j.scitotenv.2012.12.035

    CrossRef Google Scholar

    [77] Schlüter-Vorberg L, Prasse C, Ternes T A, et al.Toxification by transformation in conventional and advanced wastewater treatment:The antiviral drug acyclovir[J].Environmental Science & Technology Letters, 2015, 2(12):342-346.

    Google Scholar

    [78] Prasse C, Wagner M, Schulz R, et al.Biotransformation of the antiviral drugs acyclovir and penciclovir in activated sludge treatment[J].Environmental Science & Technology, 2011, 45(7):2761-2769.

    Google Scholar

    [79] López S R, Jurado A, Vázquez-Suñé E, et al.Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain[J].Environmental Pollution, 2013, 174:305-315. doi: 10.1016/j.envpol.2012.11.022

    CrossRef Google Scholar

    [80] Basaglia G, Pietrogrande M.Optimization of a SPME/GC/MS method for the simultaneous determination of pharmaceuticals and personal care products in waters[J].Chromatographia, 2012, 75(7-8):361-370. doi: 10.1007/s10337-012-2207-7

    CrossRef Google Scholar

    [81] Vila M, Celeiro M, Lamas J P, et al., Simultaneous in-vial acetylation solid-phase microextraction followed by gas chromatography tandem mass spectrometry for the analysis of multiclass organic UV filters in water[J].Journal of Hazardous Materials, 2017, 323:45-55. doi: 10.1016/j.jhazmat.2016.06.056

    CrossRef Google Scholar

    [82] Tong L, Huang S, Wang Y, et al.Occurrence of an-tibiotics in the aquatic environment of Jianghan Plain, Central China[J].Science of the Total Environment, 2014, 497-498:180-187. doi: 10.1016/j.scitotenv.2014.07.068

    CrossRef Google Scholar

    [83] Radović T, Grujić S, Petković A, et al.Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and ground water in the Danube River and tributaries in Serbia[J].Environmental Monitoring and Assessment, 2014, 187(1):1-17.

    Google Scholar

    [84] Sumner N R, Guitart C, Fuentes G, et al.Inputs and distributions of synthetic musk fragrances in an estuarine and coastal environment:A case study[J].Environmental Pollution, 2010, 158(1):215-222. doi: 10.1016/j.envpol.2009.07.018

    CrossRef Google Scholar

    [85] Rice S L, Mitra S.Microwave-assisted solvent extraction of solid matrices and subsequent detection of pharmaceuticals and personal care products (PPCPs) using gas chromatography-mass spectrometry[J].Analytica Chimica Acta, 2007, 589(1):125-132. doi: 10.1016/j.aca.2007.02.051

    CrossRef Google Scholar

    [86] Albero B, Sánchez B C, Miguel E, et al.Analysis of natural-occurring and synthetic sexual hormones in sludge-amended soils by matrix solid-phase dispersion and isotope dilution gas chromatography-tandem mass spectrometry[J].Journal of Chromatography A, 2013, 1283:39-45. doi: 10.1016/j.chroma.2013.01.113

    CrossRef Google Scholar

    [87] Wu X, Conkle J L, Gan J.Multi-residue determination of pharmaceutical and personal care products in vegetables[J].Journal of Chromatography A, 2012, 1254:78-86. doi: 10.1016/j.chroma.2012.07.041

    CrossRef Google Scholar

    [88] Subedi B, Mottaleb M A, Chambliss C K, et al.Simultaneous analysis of select pharmaceuticals and personal care products in fish tissue using pressurized liquid extraction combined with silica gel cleanup[J].Journal of Chromatography A, 2011, 1218(37):6278-6284. doi: 10.1016/j.chroma.2011.07.031

    CrossRef Google Scholar

    [89] Augusto F, Hantao L W, Mogollón N G S, et al.New materials and trends in sorbents for solid-phase extraction[J].TrAC Trends in Analytical Chemistry, 2013, 43:14-23. doi: 10.1016/j.trac.2012.08.012

    CrossRef Google Scholar

    [90] Spietelun A, Marcinkowski Ł, Guardia M, et al.Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry[J].Journal of Chromatography A, 2013, 1321:1-13. doi: 10.1016/j.chroma.2013.10.030

    CrossRef Google Scholar

    [91] Bobeldijk I, Vissers J P C, Kearney G, et al.Screening and identification of unknown contaminants in water with liquid chromatography and quadrupole-orthogonal acceleration-time-of-flight tandem mass spectrometry[J].Journal of Chromatography A, 2001, 929(1-2):63-74. doi: 10.1016/S0021-9673(01)01156-6

    CrossRef Google Scholar

    [92] Regli S, Chen J, Messner M, et al.Estimating potential increased bladder cancer risk due to increased bromide concentrations in sources of disinfected drinking waters[J].Environmental Science & Technology, 2015, 49(22):13094-13102.

    Google Scholar

    [93] Richardson S D, Fasano F, Ellington J J, et al.Occu-rrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water[J].Environmental Science & Technology, 2008, 42(22):8330-8338.

    Google Scholar

    [94] Dad A, Jeong C H, Pals J A, et al.Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products[J].Environmental and Molecular Mutagenesis, 2013, 54(8):629-637. doi: 10.1002/em.v54.8

    CrossRef Google Scholar

    [95] Stalter D, O'Malley E, Gunten U, et al.Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products[J].Water Research, 2016, 91:19-30. doi: 10.1016/j.watres.2015.12.047

    CrossRef Google Scholar

    [96] Cortés C, Marcos R.Genotoxicity of Disinfection Bypro-ducts and Disinfected Waters:A Review of Recent Literature[J].Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2018, 831:1-12. doi: 10.1016/j.mrgentox.2018.04.005

    CrossRef Google Scholar

    [97] Cancho B, Ventura F, Galceran M, et al.Determination, synthesis and survey of iodinated trihalomethanes in water treatment processes[J].Water Research, 2000, 34(13):3380-3390. doi: 10.1016/S0043-1354(00)00079-8

    CrossRef Google Scholar

    [98] Calderón P D, Bayona J M.Development of an analytical procedure for the determination of trihalomethanes in leafy vegetable by headspace-spme followed by GC-ECD determination[J].Food Analytical Methods, 2015, 8(5):1093-1100. doi: 10.1007/s12161-014-9965-9

    CrossRef Google Scholar

    [99] Kubáň P, Makarõtševa N, Kiplagat I K, et al.Deter-mination of five priority haloacetic acids by capillary electrophoresis with contactless conductivity detection and solid phase extraction preconcentration[J].Journal of Separation Science, 2012, 35(5-6):666-673. Wang D, Sui Q, Zhao W T, et al.Pharmaceutical and personal care products in the surface water of China:A review[J].Chinese Science Bulletin, 2014, 59(9):743-751. doi: 10.1002/jssc.v35.5/6

    CrossRef Google Scholar

    [100] Teh H B, Li S F Y.Simultaneous determination of bromate, chlorite and haloacetic acids by two-dimensional matrix elimination ion chromatography with coupled conventional and capillary columns[J].Journal of Chromatography A, 2015, 1383:112-120. doi: 10.1016/j.chroma.2015.01.037

    CrossRef Google Scholar

    [101] Nsubuga H, Basheer C.Determination of haloacetic acids in swimming pool waters by membrane-protected micro-solid phase extraction[J].Journal of Chromatography A, 2013, 1315:47-52. doi: 10.1016/j.chroma.2013.09.050

    CrossRef Google Scholar

    [102] Alhooshani K, Basheer C, Kaur J, et al.Electromem-brane extraction and HPLC analysis of haloacetic acids and aromatic acetic acids in wastewater[J].Talanta, 2011, 86:109-113. doi: 10.1016/j.talanta.2011.08.026

    CrossRef Google Scholar

    [103] Prieto-Blanco M C, Alpendurada M F, López-Mahía P, et al.Improving methodological aspects of the analysis of five regulated haloacetic acids in water samples by solid-phase extraction, ion-pair liquid chromatography and electrospray tandem mass spectrometry[J].Talanta, 2012, 94:90-98. doi: 10.1016/j.talanta.2012.02.061

    CrossRef Google Scholar

    [104] Kubwabo C, Stewart B, Gauthier S A, et al.Improved derivatization technique for gas chromatography-mass spectrometry determination of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5h)-furanone in drinking water[J].Analytica Chimica Acta, 2009, 649(2):222-229. doi: 10.1016/j.aca.2009.07.035

    CrossRef Google Scholar

    [105] Planas C, Ventura F, Caixach J, et al.Analysis of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5h) -furanone (MX) and its brominated analogues in chlorine-treated water by gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QQQ-MS/MS)[J].Talanta, 2015, 144:145-156. doi: 10.1016/j.talanta.2015.05.033

    CrossRef Google Scholar

    [106] Luo Q, Chen X, Wei Z, et al.Simultaneous and high-throughput analysis of iodo-trihalomethanes, haloacetonitriles, and halonitromethanes in drinking water using solid-phase microextraction/gas chromatography-mass spectrometry:An optimization of sample preparation[J].Journal of Chromatography A, 2014, 1365:45-53. doi: 10.1016/j.chroma.2014.09.003

    CrossRef Google Scholar

    [107] Gilchrist E S, Healy D A, Morris V N, et al.A review of oxyhalide disinfection by-products determina-tion in water by ion chromatography and ion chromatography-mass spectrometry[J].Analytica Chimica Acta, 2016, 942:12-22. doi: 10.1016/j.aca.2016.09.006

    CrossRef Google Scholar

    [108] Subedi B, Usenko S.Enhanced pressurized liquid extraction technique capable of analyzing polychlorodibenzo-p-dioxins, polychlorodibenzofurans, and polychlorobiphenyls in fish tissue[J].Journal of Chromatography A, 2012, 1238:30-37. doi: 10.1016/j.chroma.2012.03.037

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(3667) PDF downloads(116) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint