Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2016 Vol. 35, No. 4
Article Contents

Gao-yong LAN, Hua WANG, Jian-guo YU, Qi-he YING, Wei TANG, Hui YANG. Influence on the Chemistry Quenching of Low Level Tritium in Natural Water by the Solid Polymer Electrolysis Enrichment Method[J]. Rock and Mineral Analysis, 2016, 35(4): 415-419. doi: 10.15898/j.cnki.11-2131/td.2016.04.013
Citation: Gao-yong LAN, Hua WANG, Jian-guo YU, Qi-he YING, Wei TANG, Hui YANG. Influence on the Chemistry Quenching of Low Level Tritium in Natural Water by the Solid Polymer Electrolysis Enrichment Method[J]. Rock and Mineral Analysis, 2016, 35(4): 415-419. doi: 10.15898/j.cnki.11-2131/td.2016.04.013

Influence on the Chemistry Quenching of Low Level Tritium in Natural Water by the Solid Polymer Electrolysis Enrichment Method

More Information
  • The Solid Polymer Electrolysis (SPE) enrichment method is a practical way to measure low level tritium (<1 Bq/m3) in natural water samples. However, the concentrated liquid samples are acidified by impurity ions from water samples or the process of water sample pretreatment with a SPE electrolysis device, which results in perturbation when liquid scintillation is added progressively to the concentrated liquid. Consequently, the radioactive activity of tritium will be lower than the reference value because of the chemistry quenching effect occurring in the measurement process. The influence of chemistry quenching caused by impurity ions, pH value and electrical conductivity of the low level tritium samples in the tritium measurement results are discussed in this paper. The results show that, to avoid the chemistry quenching caused by impurity ions deposited in SPE electrolysis device and improve the accuracy of measurement counting, it is necessary to keep the pH value neutral and the electrical conductivity ≤1 μS/cm. Using the ion and acid-base hybrid exchange resin column separates impurity ions for high electrical conductivity (>1 μS/cm) or acidification pH samples. For water samples the impurity ions taken by the polymer film, can be used to adjust the pH value with tiny amounts of ammonia to avoid chemistry quenching and thus reduce the low counting of the tritium natural water samples.
  • 加载中
  • [1] 徐小三,余宁乐,杨小勇,等.液闪谱仪在低水平测氚中测量条件选择[J].核电子学与探测技术,2012,32(5):544-546.

    Google Scholar

    Xu X S,Yu N L,Yang X Y,et al.Selection of Experimental Conditions in Measuring Tritium at Low Level by the Liquid Scintillation[J]. Nuclear Electronics and Detection Technology,2012,32(5):544-546.

    Google Scholar

    [2] 卞正柱,张钰,张金卫.液闪计数器进展简述[J].核电子学与探测技术,2006,26(4):536-538.

    Google Scholar

    Bian Z Z,Zhang Y,Zhang J W.A Brief Progress of Liquid Flash Counter[J].Nuclear Electronics and Detection Technology,2006,26(4):536-538.

    Google Scholar

    [3] 唐泉,丘寿康,左富琪,等.液闪法测氚的一些优化条件和质量检验研究[J].核电子学与探测技术,2007,27(2):418-420.

    Google Scholar

    Tang Q,Qiu S K,Zuo F Q,et al.Study on Some Optimal Conditions and Quality Test of Measuring Tritium by the Liquid Scintillation Method[J].Nuclear Electronics and Detection Technology,2007,27(2):418-420.

    Google Scholar

    [4] 王伟华,朱国英,陈炳如.我国部分地区环境水氚的分布规律初探[J].中国辐射卫生,2000,9(1):347-352.

    Google Scholar

    Wang W H,Zhu G Y,Chen B R.Preliminary Study about of Environment Tritium Water Distribution Parts of Our Country[J].Chinese Journal of Radiological Health,2000,9(1):347-352.

    Google Scholar

    [5] 袁政安.氚在不同水体中的浓度分布[J].上海预防医学杂志,2000,120(7):329-330.

    Google Scholar

    Yuan Z A.Tritium Concentration Distribution in Different Waters[J].Shanghai Journal of Preventive Medicine,2000,120(7):329-330.

    Google Scholar

    [6] 张向阳,刘福亮,张琳,等.电解法浓缩环境氚水样的性能研究[J].核电子学与探测技术,2012(11):1301-1304.

    Google Scholar

    Zhang X Y,Liu F L,Zhang L,et al.The Study of Electrolysis Enrichment Performance Tritium Water Samples in Environment[J].Nuclear Electronics and Detection Technology,2012(11):1301-1304.

    Google Scholar

    [7] 王华,殷建军,杨会,等.聚合膜电解浓集法测量低水平氚环境水样的氚比活度[J].岩矿测试,2011,30(6):745-750.

    Google Scholar

    Wang H,Ying J J,Yang H,et al.Application of the Solid Polymer Electrolysis Enrichment Method for Low Level Tritium in Environmental Water and the Calculation of Tritium Specific Activity[J].Rock and Mineral Analysis,2011,30(6):745-750.

    Google Scholar

    [8] 温雪莲,杨海兰,吴斌,等.SPE固体电解质氚水浓集装置及其应用[J].核电子学与探测技术,2003,23(6):583-586.

    Google Scholar

    Wen X L,Yang H L,Wu B,et al.The Development and Application of Solid Polymer Electrolysis Enrichment Device of Tritium in Water[J].Nuclear Electronics and Detection Technology,2003,23(6):583-586.

    Google Scholar

    [9] Gröning M,Taylor C B,Winckler G,et al.Sixth IAEA Intercomparison of Low-level Tritium Measurements in Water (TRIC2000)[R].Vienna:International Atomic Energy Agency,2001.

    Google Scholar

    [10] 孟建波,桑革,薛炎,等.多种电极的SPE水电解性能研究[J].电化学,2007(2):156-159.

    Google Scholar

    Meng J B,Sang G,Xue Y,et al.The Research of Several Electrodes for SPE Water Electrolysis[J].Journal of Electrochemistry,2007(2):156-159.

    Google Scholar

    [11] 谢波,胡睿,刘云怒.固体聚合物电解池分离氚的理论分析[J].科技通报,2009,25(5):541-545.

    Google Scholar

    Xie B,Hu R,Liu Y N.Theoretical Analysis of Tritium Separation by Solid Polymer Electrolyte[J].Bulletin of Science Technology,2009,25(5):541-545.

    Google Scholar

    [12] 孟建波,桑革,薛炎,等.SPE水电解进行H/D同位素分离[J].应用化学,2007(12):1424-1427.

    Google Scholar

    Meng J B,Sang G,Xue Y,et al.H/D Isotope Separation in SPE Water Electrolysis[J].Chinese Journal of Applied Chemistry,2007(12):1424-1427.

    Google Scholar

    [13] 张向阳,刘福亮,张琳,等.液闪法测量水中氚放射性活度的化学淬灭效应[J].岩矿测试,2010,29(4):469-471.

    Google Scholar

    Zhang X Y,Liu F L,Zhang L,et al.Quenching Effect of Tritium Radioactivity in Water Sample Analysis by Liquid Scintillation Counting Method[J].Rock and Mineral Analysis,2010,29(4):469-471.

    Google Scholar

    [14] 张向阳.电解浓缩-液闪仪计数法分析天然水中氚含量的影响因素[J].岩矿测试,2005,24(2):109-111.

    Google Scholar

    Zhang X Y.Factors Affecting the Analysis of Tritium in Natural Water by Electrolytic Enrichment and Liquid Scintillation Counting Method[J].Rock and Mineral Analysis,2005,24(2):109-111.

    Google Scholar

    [15] 杨礼平,周明富,周卫建,等.液闪法14C年代测量中的化学淬灭校正[J].核电子学与探测技术,2005,25(4):241-245.

    Google Scholar

    Yang L P,Zhou M F,Zhou W J,et al.Quench Calibration for 14C Age Determination in Liquid Scintillation Method[J].Nuclear Electronics and Detection Technology,2005,25(4):241-245.

    Google Scholar

    [16] 张祖华.液体闪烁测量中常被忽略而引入很大误差的问题[J].核电子学与探测技术,2002,22(2):187-189.

    Google Scholar

    Zhang Z H.A Problem of Introducing Errors in the Measurement of Liquid Scintillation[J].Nuclear Electronics and Detection Technology,2002,22(2):187-189.

    Google Scholar

    [17] 董志武,周元全.杂质离子对固体聚合物电解质水电解槽性能的影响[J].化工学报,2005,56(5):900-903.

    Google Scholar

    Dong Z W,Zhou Y Q.Influence of Impure Ions on Performance of Solid Polymer Electrolyte Water Electrolyser[J].Journal of Chemical Industry and Engineering,2005,56(5):900-903.

    Google Scholar

    [18] 陈羚,程璇,张颖,等.质子交换膜NafionR的导电性与物理老化[J].高分子材料科学与工程,2005,21(5):181-184.

    Google Scholar

    Chen L,Cheng X,Zhang Y,et al.The Conductivity and Physical Aging of NafionR[J].Polymer Materials Science and Engineering,2005,21(5):181-184.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(3)

Article Metrics

Article views(1103) PDF downloads(18) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint