Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2016 Vol. 35, No. 4
Article Contents

Sheng ZHANG, Gen-wen CHEN, T M SEWARD. Determination of Boron Content in Hydrothermal Vapor by Ion Selective Electrode Method: Insights into the Gaseous Transport of Boron[J]. Rock and Mineral Analysis, 2016, 35(4): 358-365. doi: 10.15898/j.cnki.11-2131/td.2016.04.004
Citation: Sheng ZHANG, Gen-wen CHEN, T M SEWARD. Determination of Boron Content in Hydrothermal Vapor by Ion Selective Electrode Method: Insights into the Gaseous Transport of Boron[J]. Rock and Mineral Analysis, 2016, 35(4): 358-365. doi: 10.15898/j.cnki.11-2131/td.2016.04.004

Determination of Boron Content in Hydrothermal Vapor by Ion Selective Electrode Method: Insights into the Gaseous Transport of Boron

  • Geological phenomena of volcanism and metallogenesis indicate that boron can be transported significantly in aqueous fluids and gases. In this study, the Ion Selective Electrode Method was used to determine the solubility of boron in hydrothermal vapor in order to determine the ability of gaseous transport of boron. The electric potentials of boric acid standard solutions and boron-bearing condensates of water vapor after conversion to tetrafluoroborate ion with hydrofluoric acid were determined using a fluoroborate selective electrode. When the concentrations of boron change within the main range of geological fluids (0.52-524.50 mg/L), the calibration curve reveals a good linear Nernstian relationship between the potential and the logarithm of boron content with high sensitivity, good stability and good reproducibility. The detection limit of this method is 0.13 mg/L of boron, within uncertainties, which is lower than the upper limit of boron content standard for potable waters. This method is suitable for boron analysis of hydrothermal vapor. The experimental results of boric acid volatilization show that boron content in water vapor reaches 0.65%-0.72% at 150℃ and 0.37 MPa, which is consistent with boron-rich volcanic fumarole gases, demonstrating that boron can be remarkably transported in vapor phase and exists mainly in gaseous molecule species H3BO3 under high-temperature hydrothermal conditions. The geological characteristics of ore deposits and available experimental evidence indicate that boron transport in vapor and subsequent tourmalinization is closely related to the mineralization of rare metal type pegmatites and the formation of hydrothermal-pneumatolytic type Sn-W and Mo deposits and porphyry Cu and Au deposits.
  • 加载中
  • [1] Leeman W P,Sisson V B.Geochemistry of Boron and Its Implications for Crustal and Mantle Processes[J] .Reviews in Mineralogy and Geochemistry,1996,33(1):645-707.

    Google Scholar

    [2] Thomas R.Determination of the H3BO3 Concentration in Fluid and Melt Inclusions in Granite Pegmatites by Laser Raman Microprobe Spectroscopy[J].American Mineralogist,2002,87(1):56-68. doi: 10.2138/am-2002-0107

    CrossRef Google Scholar

    [3] Kukuljan J A,Alvarez J L.Distribution of B(OH)3 between Water and Steam at High Temperatures[J].The Journal of Chemical Thermodynamics,1999,31(12):1511-1522. doi: 10.1006/jcht.1999.0552

    CrossRef Google Scholar

    [4] Schatz O J,Dolejs D,Stix J,et al.Partitioning of Boron among Melt,Brine and Vapor in the System Haplogranite-H2O-NaCl at 800℃ and 100MPa[J].Chemical Geology,2004,210(1-4):135-147. doi: 10.1016/j.chemgeo.2004.06.007

    CrossRef Google Scholar

    [5] Liebscher A,Meixner A,Romer R L,et al.Liquid-Vapor Fractionation of Boron and Boron Isotopes: Experimental Calibration at 400℃/23MPa to 450℃/42MPa[J].Geochimica et Cosmochimica Acta,2005,69(24):5693-5704. doi: 10.1016/j.gca.2005.07.019

    CrossRef Google Scholar

    [6] 张生,陈根文,Seward T M,等.硼在共存水蒸气-富硼熔体之间分配的实验研究及其地质意义[J].地球化学,2014,43(6):583-591.

    Google Scholar

    Zhang S,Chen G W,Seward T M,et al.Experimental Study on Boron Distribution between Coexisting Water Vapor and Boron-rich Melt and Its Geological Implications[J].Geochimica,2014,43(6):583-591.

    Google Scholar

    [7] Smith C L,Ficklin W H,Thompson J M.Concentrations of Arsenic,Antimony,and Boron in Steam and Steam Condensate at the Geysers,California[J].Journal of Volcanology and Geothermal Research,1987,32(4):329-341. doi: 10.1016/0377-0273(87)90083-7

    CrossRef Google Scholar

    [8] Audétat A,Günther D,Heinrich C A.Formation of a Magmatic-Hydrothermal Ore Deposit:Insights with LA-ICP-MS Analysis of Fluid Inclusions[J].Science,1998,279:2091-2094. doi: 10.1126/science.279.5359.2091

    CrossRef Google Scholar

    [9] Heinrich C A,Günther D,Audétat A,et al.Metal Fra-ctionation between Magmatic Brine and Vapor, Determinated by Microanalysis of Fluid Inclusions[J].Geology,1999,27(8):755-758. doi: 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2

    CrossRef Google Scholar

    [10] Ogden J S,Young N A.The Characterisation of Molecular Boric Acid by Mass Spectrometry and Matrix Isolation Infrared Spectroscopy[J].Journal of the Chemical Society,1988(6):1645-1652.

    Google Scholar

    [11] Gilson T R.Characterisation of Ortho- and Meta-Boric Acids in the Vapour Phase[J].Journal of the Chemical Society,Dalton Transactions,1991(9):2463-2466. doi: 10.1039/dt9910002463

    CrossRef Google Scholar

    [12] 刘婷琳,张浩原,黄赛花.姜黄素分光光度法测定土壤有效硼的不确定度评定[J].生态环境学报,2009,18(3):1118-1121.

    Google Scholar

    Liu T L,Zhang H Y,Huang S H.Uncertainty Evaluation of the Available Boron in Soil with Curcumin Spetrophotometry[J].Ecology and Environmental Sciences,2009,18(3):1118-1121.

    Google Scholar

    [13] 轩月兰,多克辛,南淑清,等.水中硼测定方法对比研究[J].中国环境监测,2013,29(2):75-78.

    Google Scholar

    Xuan Y L,Duo K X,Nan S Q,et al.Comparing Study of Methods for Determination of Boron in Water[J].Environmental Monitoring in China,2013,29(2):75-78.

    Google Scholar

    [14] 陆建军,龚琦,韦小玲,等.新铜试剂-铜(Ⅰ)-四氟合硼离子缔合萃取-火焰原子吸收光谱法间接测定柑橘园土壤中全硼[J].分析科学学报,2007,23(3):315-318.

    Google Scholar

    Lu J J,Gong Q,Wei X L,et al.Study on FAAS Indirect Determination of Total Boron in the Soil of Orange Plantation by Extraction with Neocuproine-Cu(Ⅰ)-BF-4 Ionic Association System[J].Journal of Analytical Science,2007,23(3):315-318.

    Google Scholar

    [15] 彭剑,陆建平,王益林,等.分光光度法与火焰原子吸收光谱法测定钢中硼的比较[J].理化检验(化学分册),2009,45(1):98-100.

    Google Scholar

    Peng J,Lu J P,Wang Y L,et al.Comparison of Methods of Determination of Boron in Steel by Spectrophotometry and by Flame AAS[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2009,45(1):98-100.

    Google Scholar

    [16] Romer R L,Meixner A,Förster H.Lithium and Boron in Late-Orogenic Granites-Isotopic Fingerprints for the Source of Crustal Melts[J].Geochimica et Cosmochimica Acta,2014,131:98-114. doi: 10.1016/j.gca.2014.01.018

    CrossRef Google Scholar

    [17] 王祝,李明礼,邵蓓,等.电感耦合等离子体发射光谱法测定西藏日多温泉地热水中11种主次量元素[J].岩矿测试,2015,34(3):302-307.

    Google Scholar

    Wang Z,Li M L,Shao B,et al.Determination of 11 Major and Minor Elements in Geothermal Water of the Riduo Hotsprings from Tibet by Inductively Coupled Plasma-Optical Emission Spectrometry[J].Rock and Mineral Analysis,2015,34(3):302-307.

    Google Scholar

    [18] Menard G,Vlastélic I,Ionov D A,et al.Precise and Accurate Determination of Boron Concentration in Silicate Rocks by Direct Isotope Dilution ICP-MS:Insights into the B Budget of the Mantle and B Behavior in Magmatic Systems[J].Chemical Geology,2013,354:139-149. doi: 10.1016/j.chemgeo.2013.06.017

    CrossRef Google Scholar

    [19] 杨贤,张洁,蔡金芳,等.电感耦合等离子体质谱法测定地质样品中硼[J].冶金分析,2014,34(6):7-10.

    Google Scholar

    Yang X,Zhang J,Cai J F,et al.Determination of Boron in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry[J].Metallurgical Analysis,2014,34(6):7-10.

    Google Scholar

    [20] Wood J,Nicholson K.Boron Determination in Water by Ion-selective Electrode[J].Environment International,1995,21(2):237-243. doi: 10.1016/0160-4120(95)00014-3

    CrossRef Google Scholar

    [21] 王萍,焦凤菊.离子选择电极法测定钢铁中硼[J].冶金分析,2000,20(1):60-61.

    Google Scholar

    Wang P,Jiao F J.Determination of Boron in Steel by Ion Selective Electrode Method[J].Metallurgical Analysis,2000,20(1):60-61.

    Google Scholar

    [22] 许丽,王锦利,郭子静.氟硼酸根离子选择电极法测定铜基焊料中硼元素[J].理化检验(化学分册),2016,52(2):196-199.

    Google Scholar

    Xu L,Wang J L,Guo Z J.Determination of Boron in Copper-based Solders with Ion-selective Electrode of Fluoroborate[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2016,52(2):196-199.

    Google Scholar

    [23] Schmidt C,Thomas R,Heinrich W.Boron Speciation in Aqueous Fluids at 22 to 600℃ and 0.1MPa to 2GPa[J].Geochimica et Cosmochimica Acta,2005,69(2):275-281. doi: 10.1016/j.gca.2004.06.018

    CrossRef Google Scholar

    [24] Bassett B L.A Critical Evaluation of the Thermodynamic Data for Boron Ions,Ion Pairs,Complexes,and Poly-anions in Aqueous Solution at 298.15K and 1bar[J]. Geochimica et Cosmochimica Acta,1980,44(8):1151-1160. doi: 10.1016/0016-7037(80)90069-1

    CrossRef Google Scholar

    [25] Kanzaki T,Yoshida M.Boron Isotopic Composition of Fumarolic Condensates and Sassolites from Satsuma Iwojima ,Japan[J].Geochimica et Cosmochimica Acta,1979,43(11):1859-1863. doi: 10.1016/0016-7037(79)90035-8

    CrossRef Google Scholar

    [26] Quisefit J P,Toutain J P,Bergametti G,et al.Evolution Versus Cooling of Gaseous Volcanic Emissions from Momotombo Volcano,Nicaragua:Thermochemical Model and Observations[J].Geochimica et Cosmochimica Acta,1989,53(10):2591-2608. doi: 10.1016/0016-7037(89)90131-2

    CrossRef Google Scholar

    [27] Leeman W P,Tonarini S,Pennisi M,et al.Boron Isotopic Variations in Fumarolic Condensates and Thermal Waters from Vulcano Island,Italy:Implications for Evolution of Volcanic Fluids[J].Geochimica et Cosmochimica Acta,2005,69(1):143-163. doi: 10.1016/j.gca.2004.04.004

    CrossRef Google Scholar

    [28] Banks D A,Davies G R,Yardley B W D,et al.The Chemistry of Brines from an Alpine Thrust System in the Central Pyrenees:An Application of Fluid Inclusion Analysis to the Study of Fluid Behavior in Orogenesis[J].Geochimica et Cosmochimica Acta,1991,55(4):1021-1030. doi: 10.1016/0016-7037(91)90160-7

    CrossRef Google Scholar

    [29] Yardley B W D,Banks D A,Bottrell S H,et al.Post-metamorphic Gold-Quartz Veins from NW Italy:The Composition and Origin of the Ore Fluid[J].Mineralogical Magazine,1993,57:407-422. doi: 10.1180/minmag

    CrossRef Google Scholar

    [30] 张大林,田淑芳,栾学文.西藏扎布耶盐湖氧化硼含量空间分布遥感研究[J].国土资源遥感,2007,19(1):32-48.

    Google Scholar

    Zhang D L,Tian S F,Luan X W.Remote Sensing Study on the Spatial Distribution of Boron Oxide Contents in Zhabuye Salt Lake,Tibet[J].Remote Sensing for Land and Resources,2007,19(1):32-48.

    Google Scholar

    [31] Williams A E,Taylor M C.Mass Spectrometric Identifi-cation of Boric Acid in Fluid Inclusions in Pegmatite Minerals[J].Geochimica et Cosmochimica Acta,1996,60(18):3435-3443. doi: 10.1016/0016-7037(96)00151-2

    CrossRef Google Scholar

    [32] Kracek F C,Morey G W,Merwin H E.The System,Water-Boron Oxide[J].American Journal of Science,1938,35A:143-171.

    Google Scholar

    [33] Garavelli A,Vurro F.Barberiite,NH4BF4,a New Mineral from Vulcano,Aeolian Islands,Italy[J].American Mineralogist,1994,79(3-4):381-384.

    Google Scholar

    [34] London D.Internal Differentiation of Rare-Element Peg-matites:Effects of Boron,Phosphorus,and Fluorine[J].Geochimica et Cosmochimica Acta,1987,51(3):403-420. doi: 10.1016/0016-7037(87)90058-5

    CrossRef Google Scholar

    [35] Taylor M C,Williams A E,McKibben M A.Vapor-phase Boric Acid in Quartz-hosted Fluid Inclusions from a Miarolitic Elbaite Sub-type,Complex Rare-Element Pegmatite,Southern California[C]//Proceedings of International Mineralogical Association 16th General Meeting,1994:405-406.

    Google Scholar

    [36] Sillitoe R H,Sawkins F J.Geologic,Mineralogic and Fluid Inclusion Studies Relating to the Origin of Copper-bearing Tourmaline Breccia Pipes,Chile[J].Economic Geology,1971,66:1028-1041. doi: 10.2113/gsecongeo.66.7.1028

    CrossRef Google Scholar

    [37] Olade M A.Nature of Volatile Element Anomalies at Porphyry Copper Deposits,Highland Valley,B.C.Canada [J].Chemical Geology,1977,20:235-252. doi: 10.1016/0009-2541(77)90046-8

    CrossRef Google Scholar

    [38] Slack J F.Tourmaline Associations with Hydrothermal Ore Deposits[J].Reviews in Mineralogy and Geochemistry,1996,33(1):559-643.

    Google Scholar

    [39] Sillitoe R H.Porphyry Copper Systems[J].Economic Geology,2010,105:3-41. doi: 10.2113/gsecongeo.105.1.3

    CrossRef Google Scholar

    [40] Halls C.Energy and Mechanism in the Magmato-Hydro-thermal Evolution of the Cornubian Batholith:A Review[M]//Seltmann R,Kämpf H,Möller P.Metallogeny of Collisional Orogens.Proceedings of IAGOD Erzgebirge Meeting.Prague:Czech Geological Survey,1994:274-294.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(1357) PDF downloads(20) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint