[1] |
Leeman W P,Sisson V B.Geochemistry of Boron and Its Implications for Crustal and Mantle Processes[J] .Reviews in Mineralogy and Geochemistry,1996,33(1):645-707.
Google Scholar
|
[2] |
Thomas R.Determination of the H3BO3 Concentration in Fluid and Melt Inclusions in Granite Pegmatites by Laser Raman Microprobe Spectroscopy[J].American Mineralogist,2002,87(1):56-68. doi: 10.2138/am-2002-0107
CrossRef Google Scholar
|
[3] |
Kukuljan J A,Alvarez J L.Distribution of B(OH)3 between Water and Steam at High Temperatures[J].The Journal of Chemical Thermodynamics,1999,31(12):1511-1522. doi: 10.1006/jcht.1999.0552
CrossRef Google Scholar
|
[4] |
Schatz O J,Dolejs D,Stix J,et al.Partitioning of Boron among Melt,Brine and Vapor in the System Haplogranite-H2O-NaCl at 800℃ and 100MPa[J].Chemical Geology,2004,210(1-4):135-147. doi: 10.1016/j.chemgeo.2004.06.007
CrossRef Google Scholar
|
[5] |
Liebscher A,Meixner A,Romer R L,et al.Liquid-Vapor Fractionation of Boron and Boron Isotopes: Experimental Calibration at 400℃/23MPa to 450℃/42MPa[J].Geochimica et Cosmochimica Acta,2005,69(24):5693-5704. doi: 10.1016/j.gca.2005.07.019
CrossRef Google Scholar
|
[6] |
张生,陈根文,Seward T M,等.硼在共存水蒸气-富硼熔体之间分配的实验研究及其地质意义[J].地球化学,2014,43(6):583-591.
Google Scholar
Zhang S,Chen G W,Seward T M,et al.Experimental Study on Boron Distribution between Coexisting Water Vapor and Boron-rich Melt and Its Geological Implications[J].Geochimica,2014,43(6):583-591.
Google Scholar
|
[7] |
Smith C L,Ficklin W H,Thompson J M.Concentrations of Arsenic,Antimony,and Boron in Steam and Steam Condensate at the Geysers,California[J].Journal of Volcanology and Geothermal Research,1987,32(4):329-341. doi: 10.1016/0377-0273(87)90083-7
CrossRef Google Scholar
|
[8] |
Audétat A,Günther D,Heinrich C A.Formation of a Magmatic-Hydrothermal Ore Deposit:Insights with LA-ICP-MS Analysis of Fluid Inclusions[J].Science,1998,279:2091-2094. doi: 10.1126/science.279.5359.2091
CrossRef Google Scholar
|
[9] |
Heinrich C A,Günther D,Audétat A,et al.Metal Fra-ctionation between Magmatic Brine and Vapor, Determinated by Microanalysis of Fluid Inclusions[J].Geology,1999,27(8):755-758. doi: 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
CrossRef Google Scholar
|
[10] |
Ogden J S,Young N A.The Characterisation of Molecular Boric Acid by Mass Spectrometry and Matrix Isolation Infrared Spectroscopy[J].Journal of the Chemical Society,1988(6):1645-1652.
Google Scholar
|
[11] |
Gilson T R.Characterisation of Ortho- and Meta-Boric Acids in the Vapour Phase[J].Journal of the Chemical Society,Dalton Transactions,1991(9):2463-2466. doi: 10.1039/dt9910002463
CrossRef Google Scholar
|
[12] |
刘婷琳,张浩原,黄赛花.姜黄素分光光度法测定土壤有效硼的不确定度评定[J].生态环境学报,2009,18(3):1118-1121.
Google Scholar
Liu T L,Zhang H Y,Huang S H.Uncertainty Evaluation of the Available Boron in Soil with Curcumin Spetrophotometry[J].Ecology and Environmental Sciences,2009,18(3):1118-1121.
Google Scholar
|
[13] |
轩月兰,多克辛,南淑清,等.水中硼测定方法对比研究[J].中国环境监测,2013,29(2):75-78.
Google Scholar
Xuan Y L,Duo K X,Nan S Q,et al.Comparing Study of Methods for Determination of Boron in Water[J].Environmental Monitoring in China,2013,29(2):75-78.
Google Scholar
|
[14] |
陆建军,龚琦,韦小玲,等.新铜试剂-铜(Ⅰ)-四氟合硼离子缔合萃取-火焰原子吸收光谱法间接测定柑橘园土壤中全硼[J].分析科学学报,2007,23(3):315-318.
Google Scholar
Lu J J,Gong Q,Wei X L,et al.Study on FAAS Indirect Determination of Total Boron in the Soil of Orange Plantation by Extraction with Neocuproine-Cu(Ⅰ)-BF-4 Ionic Association System[J].Journal of Analytical Science,2007,23(3):315-318.
Google Scholar
|
[15] |
彭剑,陆建平,王益林,等.分光光度法与火焰原子吸收光谱法测定钢中硼的比较[J].理化检验(化学分册),2009,45(1):98-100.
Google Scholar
Peng J,Lu J P,Wang Y L,et al.Comparison of Methods of Determination of Boron in Steel by Spectrophotometry and by Flame AAS[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2009,45(1):98-100.
Google Scholar
|
[16] |
Romer R L,Meixner A,Förster H.Lithium and Boron in Late-Orogenic Granites-Isotopic Fingerprints for the Source of Crustal Melts[J].Geochimica et Cosmochimica Acta,2014,131:98-114. doi: 10.1016/j.gca.2014.01.018
CrossRef Google Scholar
|
[17] |
王祝,李明礼,邵蓓,等.电感耦合等离子体发射光谱法测定西藏日多温泉地热水中11种主次量元素[J].岩矿测试,2015,34(3):302-307.
Google Scholar
Wang Z,Li M L,Shao B,et al.Determination of 11 Major and Minor Elements in Geothermal Water of the Riduo Hotsprings from Tibet by Inductively Coupled Plasma-Optical Emission Spectrometry[J].Rock and Mineral Analysis,2015,34(3):302-307.
Google Scholar
|
[18] |
Menard G,Vlastélic I,Ionov D A,et al.Precise and Accurate Determination of Boron Concentration in Silicate Rocks by Direct Isotope Dilution ICP-MS:Insights into the B Budget of the Mantle and B Behavior in Magmatic Systems[J].Chemical Geology,2013,354:139-149. doi: 10.1016/j.chemgeo.2013.06.017
CrossRef Google Scholar
|
[19] |
杨贤,张洁,蔡金芳,等.电感耦合等离子体质谱法测定地质样品中硼[J].冶金分析,2014,34(6):7-10.
Google Scholar
Yang X,Zhang J,Cai J F,et al.Determination of Boron in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry[J].Metallurgical Analysis,2014,34(6):7-10.
Google Scholar
|
[20] |
Wood J,Nicholson K.Boron Determination in Water by Ion-selective Electrode[J].Environment International,1995,21(2):237-243. doi: 10.1016/0160-4120(95)00014-3
CrossRef Google Scholar
|
[21] |
王萍,焦凤菊.离子选择电极法测定钢铁中硼[J].冶金分析,2000,20(1):60-61.
Google Scholar
Wang P,Jiao F J.Determination of Boron in Steel by Ion Selective Electrode Method[J].Metallurgical Analysis,2000,20(1):60-61.
Google Scholar
|
[22] |
许丽,王锦利,郭子静.氟硼酸根离子选择电极法测定铜基焊料中硼元素[J].理化检验(化学分册),2016,52(2):196-199.
Google Scholar
Xu L,Wang J L,Guo Z J.Determination of Boron in Copper-based Solders with Ion-selective Electrode of Fluoroborate[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2016,52(2):196-199.
Google Scholar
|
[23] |
Schmidt C,Thomas R,Heinrich W.Boron Speciation in Aqueous Fluids at 22 to 600℃ and 0.1MPa to 2GPa[J].Geochimica et Cosmochimica Acta,2005,69(2):275-281. doi: 10.1016/j.gca.2004.06.018
CrossRef Google Scholar
|
[24] |
Bassett B L.A Critical Evaluation of the Thermodynamic Data for Boron Ions,Ion Pairs,Complexes,and Poly-anions in Aqueous Solution at 298.15K and 1bar[J]. Geochimica et Cosmochimica Acta,1980,44(8):1151-1160. doi: 10.1016/0016-7037(80)90069-1
CrossRef Google Scholar
|
[25] |
Kanzaki T,Yoshida M.Boron Isotopic Composition of Fumarolic Condensates and Sassolites from Satsuma Iwojima ,Japan[J].Geochimica et Cosmochimica Acta,1979,43(11):1859-1863. doi: 10.1016/0016-7037(79)90035-8
CrossRef Google Scholar
|
[26] |
Quisefit J P,Toutain J P,Bergametti G,et al.Evolution Versus Cooling of Gaseous Volcanic Emissions from Momotombo Volcano,Nicaragua:Thermochemical Model and Observations[J].Geochimica et Cosmochimica Acta,1989,53(10):2591-2608. doi: 10.1016/0016-7037(89)90131-2
CrossRef Google Scholar
|
[27] |
Leeman W P,Tonarini S,Pennisi M,et al.Boron Isotopic Variations in Fumarolic Condensates and Thermal Waters from Vulcano Island,Italy:Implications for Evolution of Volcanic Fluids[J].Geochimica et Cosmochimica Acta,2005,69(1):143-163. doi: 10.1016/j.gca.2004.04.004
CrossRef Google Scholar
|
[28] |
Banks D A,Davies G R,Yardley B W D,et al.The Chemistry of Brines from an Alpine Thrust System in the Central Pyrenees:An Application of Fluid Inclusion Analysis to the Study of Fluid Behavior in Orogenesis[J].Geochimica et Cosmochimica Acta,1991,55(4):1021-1030. doi: 10.1016/0016-7037(91)90160-7
CrossRef Google Scholar
|
[29] |
Yardley B W D,Banks D A,Bottrell S H,et al.Post-metamorphic Gold-Quartz Veins from NW Italy:The Composition and Origin of the Ore Fluid[J].Mineralogical Magazine,1993,57:407-422. doi: 10.1180/minmag
CrossRef Google Scholar
|
[30] |
张大林,田淑芳,栾学文.西藏扎布耶盐湖氧化硼含量空间分布遥感研究[J].国土资源遥感,2007,19(1):32-48.
Google Scholar
Zhang D L,Tian S F,Luan X W.Remote Sensing Study on the Spatial Distribution of Boron Oxide Contents in Zhabuye Salt Lake,Tibet[J].Remote Sensing for Land and Resources,2007,19(1):32-48.
Google Scholar
|
[31] |
Williams A E,Taylor M C.Mass Spectrometric Identifi-cation of Boric Acid in Fluid Inclusions in Pegmatite Minerals[J].Geochimica et Cosmochimica Acta,1996,60(18):3435-3443. doi: 10.1016/0016-7037(96)00151-2
CrossRef Google Scholar
|
[32] |
Kracek F C,Morey G W,Merwin H E.The System,Water-Boron Oxide[J].American Journal of Science,1938,35A:143-171.
Google Scholar
|
[33] |
Garavelli A,Vurro F.Barberiite,NH4BF4,a New Mineral from Vulcano,Aeolian Islands,Italy[J].American Mineralogist,1994,79(3-4):381-384.
Google Scholar
|
[34] |
London D.Internal Differentiation of Rare-Element Peg-matites:Effects of Boron,Phosphorus,and Fluorine[J].Geochimica et Cosmochimica Acta,1987,51(3):403-420. doi: 10.1016/0016-7037(87)90058-5
CrossRef Google Scholar
|
[35] |
Taylor M C,Williams A E,McKibben M A.Vapor-phase Boric Acid in Quartz-hosted Fluid Inclusions from a Miarolitic Elbaite Sub-type,Complex Rare-Element Pegmatite,Southern California[C]//Proceedings of International Mineralogical Association 16th General Meeting,1994:405-406.
Google Scholar
|
[36] |
Sillitoe R H,Sawkins F J.Geologic,Mineralogic and Fluid Inclusion Studies Relating to the Origin of Copper-bearing Tourmaline Breccia Pipes,Chile[J].Economic Geology,1971,66:1028-1041. doi: 10.2113/gsecongeo.66.7.1028
CrossRef Google Scholar
|
[37] |
Olade M A.Nature of Volatile Element Anomalies at Porphyry Copper Deposits,Highland Valley,B.C.Canada [J].Chemical Geology,1977,20:235-252. doi: 10.1016/0009-2541(77)90046-8
CrossRef Google Scholar
|
[38] |
Slack J F.Tourmaline Associations with Hydrothermal Ore Deposits[J].Reviews in Mineralogy and Geochemistry,1996,33(1):559-643.
Google Scholar
|
[39] |
Sillitoe R H.Porphyry Copper Systems[J].Economic Geology,2010,105:3-41. doi: 10.2113/gsecongeo.105.1.3
CrossRef Google Scholar
|
[40] |
Halls C.Energy and Mechanism in the Magmato-Hydro-thermal Evolution of the Cornubian Batholith:A Review[M]//Seltmann R,Kämpf H,Möller P.Metallogeny of Collisional Orogens.Proceedings of IAGOD Erzgebirge Meeting.Prague:Czech Geological Survey,1994:274-294.
Google Scholar
|