Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 1
Article Contents

Gang LI, Yu-ling YAO, Jing-yi LI, Chao-hui ZHAO, Tao LUO, Chong-ying LI. Progress of Niobium and Tantalum Analytical Technology[J]. Rock and Mineral Analysis, 2018, 37(1): 1-14. doi: 10.15898/j.cnki.11-2131/td.201512030223
Citation: Gang LI, Yu-ling YAO, Jing-yi LI, Chao-hui ZHAO, Tao LUO, Chong-ying LI. Progress of Niobium and Tantalum Analytical Technology[J]. Rock and Mineral Analysis, 2018, 37(1): 1-14. doi: 10.15898/j.cnki.11-2131/td.201512030223

Progress of Niobium and Tantalum Analytical Technology

  • As strategic emerging mineral resources supported by the state, niobium and tantalum are the functional and structural materials needed for the development of emerging industries. Therefore, conducting research on the determination of niobium and tantalum in related materials is of great significance. Unfortunately, niobium and tantalum have similar physical and chemical properties, making it difficult to separate them. However, they are easy to hydrate. Geological samples are difficult to be decomposed, thus the determination of niobium and tantalum has always been a difficult issue. Sample pre-treatment technology and modern analytical techniques are reviewed in this paper. Sample pre-treatment is the key step for niobium and tantalum analysis, therefore a suitable sample digestion and preconcentration method combined with analytical methods and sample characteristics is the premise of accurate determination of niobium and tantalum. Instrument analysis is the mainstream of modern analytical technology. Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) are the most widely used methods for the determination of niobium and tantalum, but it is necessary to solve problems such as coexisting component interference, matrix effects and salt influence. Laser Ablation (LA), X-ray Fluorescence Spectrometry (XRF), and Neutron Activation Analysis (NAA) are the development direction of tantalum and niobium analysis, due to the fact that they avoid the complicated sample pre-treatment and addition of impurities by solid sample introduction.
  • 加载中
  • [1] Gunn G.Critical Metals Handbook:15.Tantalum and Niobium[M].USA:American Geophysical Union, 2014:361-382.

    Google Scholar

    [2] 王登红, 王瑞江, 李建康, 等.中国三稀矿产资源战略调查研究进展综述[J].中国地质, 2013, 40(2):361-370.

    Google Scholar

    Wang D H, Wang R J, Li J K, et al.The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources[J].Geology in China, 2013, 40(2):361-370.

    Google Scholar

    [3] 岩石矿物分析编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:378-380.

    Google Scholar

    [4] 有色金属工业分析丛书编辑委员会.难熔金属和稀散金属冶金分析[M].北京:冶金工业出版社, 1992:63-133.

    Google Scholar

    The Editorial Committee of Nonferrous Metal Industry Analysis Series.Refractory Metal and Rare Metal Metallurgical Analysis[M].Beijing:Metallurgical Industry Press, 1992:63-133.

    Google Scholar

    [5] Nagiev K D.Spectrophotometric determination of sim-ultaneously present niobium and tantalum[J].Journal of Analytical Chemistry, 2004, 59(10):930-934. doi: 10.1023/B:JANC.0000043907.91045.f0

    CrossRef Google Scholar

    [6] 童春临, 刘勇胜, 胡圣虹, 等.ICP-MS分析用地质样品制备过程中Nb、Ta等元素的特殊化学行为[J].地球化学, 2009, 38(1):43-52.

    Google Scholar

    Tong C L, Liu Y S, Hu S H, et al.Specific chemical behavior of Nb and Ta in geological sample preparation with PTFE bomb for ICP-MS analysis[J].Geochimica, 2009, 38(1):43-52.

    Google Scholar

    [7] Li D L, Hu X Y, Wang H Z.Separation and simultaneous determination of niobium and tantalum in steel by reversed-phase high-performance liquid chromatography using 2-(2-pyridylazo)-5-diethylamino phenol as a pre-column derivatizing reagent[J].Talanta, 2004, 63(2):233-237. doi: 10.1016/j.talanta.2003.09.028

    CrossRef Google Scholar

    [8] Li G P, Wei Q Y, Huang Z J, et al.Simultaneous determination of vanadium, niobium and tantalum by high-performance liquid chromatography equipped with on-line enrichment using 2-[2-(5-bromoquinolinylazo)]-5-diethylaminophenol as pre-column derivatization reagent[J].Microchimica Acta, 2007, 158(1-2):95-102. doi: 10.1007/s00604-006-0667-x

    CrossRef Google Scholar

    [9] Kutyrev I M, Nechepurenko G N, Gaidukova Y A.Ex-traction-spectrophotometric determination of niobium in magnetic alloys[J].Inorganic Materials, 2014, 50(14):1405-1407. doi: 10.1134/S0020168514140088

    CrossRef Google Scholar

    [10] 崔爱端, 杜梅, 刘晓杰.ICP-AES法测定稀土金属中的钛、钼、钨、铌和钽[J].稀土, 2005, 26(1):57-59.

    Google Scholar

    Cui A D, Du M, Liu X J.Determing method for titanium, molybdenum, tungsten, niobium and tantalum in rare earth metals[J].Chinese Rare Earths, 2005, 26(1):57-59.

    Google Scholar

    [11] Cheng Y.Determination of alloy and impurity elements in the WC-Co based cemented carbide by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Applied Mechanics and Materials, 2012, 271-272:222-226. doi: 10.4028/www.scientific.net/AMM.271-272

    CrossRef Google Scholar

    [12] Vachirapatama N, Doble P, Haddad P R.Separation and determination of niobium(Ⅴ) and tantalum(Ⅴ) as 2-(5-bromo-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol citrate ternary complexes in geological samples using ion interaction high-performance liquid chromatography[J].Analytica Chimica Acta, 2000, 409(1):35-43.

    Google Scholar

    [13] 刘卫, 栾亚兰, 仵丽萍.电感耦合等离子体光谱法测定锂辉石选矿产品中铌和钽[J].理化检验(化学分册), 2006, 42(9):715-716.

    Google Scholar

    Liu W, Luan Y L, Wu L P.ICP-AES determination of Nb and Ta in products of oredressing of spodumene[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2006, 42(9):715-716.

    Google Scholar

    [14] 赵朝辉, 雷勇, 易建春.ICP-MS同时测定地球化学样品中的铌钽[J].矿产综合利用, 2012(6):38-40.

    Google Scholar

    Zhao C H, Lei Y, Yi J C.Simultaneous determination of Nb and Ta in geochemical samples by inductively coupled plasma mass spectrometry[J].Multipurpose Utilization of Mineral Resources, 2012(6):38-40.

    Google Scholar

    [15] 陶慧林, 朱仕毅, 郑省政.K比例H点标准加入吸光光度法同时测定矿样中铌和钽[J].岩矿测试, 2010, 29(6):699-702.

    Google Scholar

    Tao H L, Zhu S Y, Zheng S Z.Simultaneous determination of niobium and tantalum in ore samples by K-ratio and H-point standard addition spectrophotometry[J].Rock and Mineral Analysis, 2010, 29(6):699-702.

    Google Scholar

    [16] 许涛, 崔爱端, 杜梅, 等.稀土铌钽矿中铌、钽、锆量的电感耦合等离子-原子发射光谱法测定[J].分析科学学报, 2007, 23(3):346-348.

    Google Scholar

    Xu T, Cui A D, Du M, et al.Determination of Nb, Ta and Zr in RE-Nb-Ta ore by ICP-AES[J].Journal of Analytical Science, 2007, 23(3):346-348.

    Google Scholar

    [17] Lamothe P J, Fries T L, Consul J J.Evaluation of a mic-rowave-oven system for the dissolution of geologic samples[J].Analytical Chemistry, 1986, 58(8):1881-1886. doi: 10.1021/ac00121a060

    CrossRef Google Scholar

    [18] Smolik M, Turkowska M.Method of low tantalum am-ounts determination in niobium and its compounds by ICP-OES technique[J].Talanta, 2013, 115:184-189. doi: 10.1016/j.talanta.2013.03.065

    CrossRef Google Scholar

    [19] Turkowska M, Smolik M.Pre-concentration of Ta(Ⅴ) by solvent extraction before determination of trace amounts of Ta in Nb and Nb compounds[J].Analytical Methods, 2016, 8:5304-5310. doi: 10.1039/C6AY01231K

    CrossRef Google Scholar

    [20] Morton J, Tan E, Suvarna S K.Multi-elemental analysis of human lung samples using inductively coupled plasma mass spectrometry[J].Journal of Trace Elements in Medicine and Biology, 2017, 43:63-71. doi: 10.1016/j.jtemb.2016.11.008

    CrossRef Google Scholar

    [21] Janell M C, Noel B, Jeannette R, et al.Determination of tantalum from tantalum oxide nanoparticle X-ray/CT contrast agents in rat tissues and bodily fluids by ICP-OES[J].Journal of Analytical Atomic Spectrometry, 2016, 31(6):1311-1317. doi: 10.1039/C5JA00446B

    CrossRef Google Scholar

    [22] 艾军, 汤志勇.流动注射在线液-液萃取-ICP-AES测定土壤和化探样品中痕量铌和钽[J].光谱学与光谱分析, 2001, 21(5):658-660.

    Google Scholar

    Ai J, Tang Z Y.On-line determination of niobium and tantalum in soil and geochemical exploration samples by inductively coupled plasma atomic emission spectrometry with solvent extraction flow injection[J].Spectroscopy and Spectral Analysis, 2001, 21(5):658-660.

    Google Scholar

    [23] Wang H X, Li J F, Chen Z X, et al.Fast simultaneous determination of niobium and tantalum by kalman filter analysis with flow injection chemiluminescence[J].Analytical Sciences, 2005, 21(9):1051-1055. doi: 10.2116/analsci.21.1051

    CrossRef Google Scholar

    [24] 王晓辉, 郑诗礼, 徐红彬, 等.ICP-AES法测定难分解钽铌矿渣中多种金属元素[J].光谱学与光谱分析, 2009, 29(3):805-808.

    Google Scholar

    Wang X H, Zheng S L, Xu H B, et al.Analysis of metallic elements in refractory tantalum-niobium slag by ICP-AES[J].Spectroscopy and Spectral Analysis, 2009, 29(3):805-808.

    Google Scholar

    [25] 时晓露, 刘洪青, 孙月婷, 等.电感耦合等离子体质谱法测定岩石样品中的锆铌铪钽两种预处理方法的比较[J].岩矿测试, 2009, 28(5):427-430.

    Google Scholar

    Shi X L, Liu H Q, Sun Y T, et al.Comparison of two different sample pretreatment methods in determination of Zr, Nb, Hf, Ta in rocks by inductively coupled plasma mass spectrometry[J].Rock and Mineral Analysis, 2009, 28(5):427-430.

    Google Scholar

    [26] 高会艳.ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立[J].岩矿测试, 2014, 33(3):312-320.

    Google Scholar

    Gao H Y.Determination systems of Nb and Ta in geo-chemical samples and rare earth ores by ICP-MS and ICP-AES[J].Rock and Mineral Analysis, 2014, 33(3):312-320.

    Google Scholar

    [27] 张军, 陈慧连, 曾宇斌.两种铌钽矿石消解方法的对比研究[J].广州化工, 2014, 42(10):120-122. doi: 10.3969/j.issn.1001-9677.2014.10.044

    CrossRef Google Scholar

    Zhang J, Chen H L, Zeng Y B.A comparative study of two kinds of niobium tantalum ore digestion method[J].Guangzhou Chemical Industry, 2014, 42(10):120-122. doi: 10.3969/j.issn.1001-9677.2014.10.044

    CrossRef Google Scholar

    [28] 王蕾, 何红蓼, 李冰.碱熔沉淀-等离子体质谱法测定地质样品中的多元素[J].岩矿测试, 2003, 22(2):86-92.

    Google Scholar

    Wang L, He H L, Li B.Multi-element determination in geological samples by inductively coupled plasma mass spectrometry after fusion-precipitation treatment[J].Rock and Mineral Analysis, 2003, 22(2):86-92.

    Google Scholar

    [29] Motlalepula N, Walter P, Johann T N.Hydrometallurgical separation of niobium and tantalum:A fundamental approach[J].JOM, 2016, 68(2):556-566. doi: 10.1007/s11837-015-1711-2

    CrossRef Google Scholar

    [30] 杨秀丽, 王晓辉, 孙青, 等.低浓度氢氟酸体系中MIBK萃取分离钽铌的研究[J].有色金属(冶炼部分), 2012(11):26-29. doi: 10.3969/j.issn.1007-7545.2012.11.008

    CrossRef Google Scholar

    Yang X L, Wang X H, Sun Q, et al.Study on separation of tantalum and niobium by extraction with MIBK from low hydrofluoric acid concentration system[J].Nonferrous Metals (Extractive Metallurgy), 2012(11):26-29. doi: 10.3969/j.issn.1007-7545.2012.11.008

    CrossRef Google Scholar

    [31] Makanyire T, Sanchez-Segado S, Jha A.Separation and recovery of critical metal ions using ionic liquids[J].Advances in Manufacturing, 2016, 4(1):33-46. doi: 10.1007/s40436-015-0132-3

    CrossRef Google Scholar

    [32] 罗道成, 宁立波.流动注射-离子交换分离富集-分光光度法测定石煤渣中痕量钽[J].化学试剂, 2005, 27(9):556-558.

    Google Scholar

    Luo D C, Ning L B.Determination of trace tantalum in stone coal slag with flow injection-ion exchange separation and preconcentration-spectrophotometry[J].Chemical Reagents, 2005, 27(9):556-558.

    Google Scholar

    [33] 罗道成, 刘俊峰.巯基棉富集分光光度法测定石煤渣中痕量钽[J].冶金分析, 2010, 30(8):54-57.

    Google Scholar

    Luo D C, Liu J F.Spectrophotometric determination of trace tantalum in stone coal slag after enrichment with sulfhydryl cotton[J].Metallurgical Analysis, 2010, 30(8):54-57.

    Google Scholar

    [34] Padmasubashini V, Murty D S R.Determination of ni-obium and tantalum in geological samples by ICP-AES after preconcentration by solid phase extraction on activated carbon or chitin[J].Atomic Spectroscopy, 2011, 32(1):17-26.

    Google Scholar

    [35] 胡斌, 江祖成, 曾云鹗.难熔元素铌钽铀锆在电热蒸发-等离子体发射光谱中氟化蒸发行为研究[J].岩矿测试, 1993, 12(3):183-188.

    Google Scholar

    Hu B, Jiang Z C, Zeng Y H.Vaporization behavior of niobium, tantalum, uranium and zirconium in graphite furnace ETV-ICP-AES using polytetrafluoroethylene as fluorinating agent[J].Rock and Mineral Analysis, 1993, 12(3):183-188.

    Google Scholar

    [36] Li S Q, Hu B, Jiang Z C.Direct determination of trace impurities in niobium pentaoxide solid powder with slurry sampling fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2004, 19(3):387-391. doi: 10.1039/b307780m

    CrossRef Google Scholar

    [37] Gazieva M T, Pometun E A, Pachadzhanov D N.Deter-mination of niobium, tantalum, zirconium, and hafnium by atomic emission spectrometry using directed thermochemical reactions[J].Journal of Analytical Chemistry, 2006, 61(3):250-252. doi: 10.1134/S1061934806030099

    CrossRef Google Scholar

    [38] Deblonde G J, Chagnes A, Cote G, et al.Development of a capillary electrophoresis method for the analysis in alkaline media as polyoxoanions of two strategic metals:Niobium and tantalum[J].Journal of Chromatography A, 2016, 1437:210-218. doi: 10.1016/j.chroma.2016.01.075

    CrossRef Google Scholar

    [39] 马生凤, 温宏利, 李冰, 等.微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽[J].岩矿测试, 2016, 35(3):49-53.

    Google Scholar

    Ma S F, Wen H L, Li B, et al.Determination of Nb and Ta in Nb-Ta ore by inductively coupled plasma-optical emission spectrometry with a combined microwave digestion hydrofluoric acid-resistant system[J].Rock and Mineral Analysis, 2016, 35(3):49-53.

    Google Scholar

    [40] 姚玉玲, 吴丽琨, 刘卫, 等.乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽[J].岩矿测试, 2015, 34(2):224-228.

    Google Scholar

    Yao Y L, Wu L K, Liu W, et al.Determination of Nb and Ta in ores and metallurgical samples by inductively coupled plasma-atomic emission spectrometry with ethanol as a sensitizer[J].Rock and Mineral Analysis, 2015, 34(2):224-228.

    Google Scholar

    [41] 李韶梅, 王国增, 赵军, 等.电感耦合等离子体原子发射光谱法测定铌铁中铌和钽[J].冶金分析, 2012, 32(3):48-50.

    Google Scholar

    Li S M, Wang G Z, Zhao J, et al.Determination of niobium and tantalum in ferroniobium by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2012, 32(3):48-50.

    Google Scholar

    [42] 徐娟, 郑诗礼, 郭奋, 等.电感耦合等离子体原子发射光谱法测定钽中微量铌的多元光谱拟合干扰校正方法研究[J].冶金分析, 2010, 30(8):1-6.

    Google Scholar

    Xu J, Zheng S L, Guo F, et al.Research on the multicomponent spectral-fitting interference correction for the determination of micro niobium in tantalum by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2010, 30(8):1-6.

    Google Scholar

    [43] Saran R, Khorge C R, Premadas A, et al.ICP-OES determination of niobium, tantalum, and titanium at trace to percentage levels in varying geological matrices[J].Atomic Spectroscopy, 2004, 25(5):226-231.

    Google Scholar

    [44] 潘钢, 易建春.恒温电热板湿法消解-ICP-AES对地质样品中铌和钽的连续测定[J].光谱实验室, 2012, 29(3):1597-1600.

    Google Scholar

    Pan G, Yi J C.Continuos determination of niobium and tantalum in geological samples by ICP-AES with constant temperature electric heating plate wet digestion[J].Chinese Journal of Spectroscopy Laboratory, 2012, 29(3):1597-1600.

    Google Scholar

    [45] 邹阳, 杨远, 罗悠, 等.电感耦合等离子体原子发射光谱(ICP-AES)法测定锂云母中的锂、钽、铌等7种元素[J].中国无机分析化学, 2016, 6(1):41-44.

    Google Scholar

    Zou Y, Yang Y, Luo Y, et al.Determination of seven elements (lithium, tantalum, niobium et al.) in lepidolite by inductively coupled plasma emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1):41-44.

    Google Scholar

    [46] 第五春荣, 柳小明, 袁洪林, 等.193nm ArF准分子激光剥蚀等离子体质谱法测定熔融玻璃中微量铌和钽[J].岩矿测试, 2007, 26(1):1-3.

    Google Scholar

    Diwu C R, Liu X M, Yuan H L, et al.Determination of micro-amount of niobium and tantalum in fused glass samples by argon fluoride 193nm excimer laser ablation-inductively coupled plasma mass spectrometry[J].Rock and Mineral Analysis, 2007, 26(1):1-3.

    Google Scholar

    [47] Park C S, Shin H S, Oh H, et al.Trace element analysis of whole-rock glass beads of geological reference materials by Nd:YAG UV 213 nm LA-ICP-MS[J].Journal of Analytical Science and Technology, 2016, 7:15. doi: 10.1186/s40543-016-0094-5

    CrossRef Google Scholar

    [48] Weyer S, Münker C, Rehkämper M.Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS[J].Chemical Geology, 2002, 187(3):295-313.

    Google Scholar

    [49] Sun S L, Li J.Determination of Zr, Nb, Mo, Sn, Hf, Ta, and W in seawater by N-benzoyl-N-phenylhydroxylamine extraction chromatographic resin and inductively coupled plasma-mass spectrometry[J].Microchemical Journal, 2015, 119:102-107. doi: 10.1016/j.microc.2014.11.006

    CrossRef Google Scholar

    [50] Yang X J, Pin C.Determination of niobium, tantalum, zirconium and hafnium in geological materials by extraction chromatography and inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2002, 458(2):375-386. doi: 10.1016/S0003-2670(02)00076-4

    CrossRef Google Scholar

    [51] Nagaishi K, Ishikawa T.A simple method for the precise determination of boron, zirconium, niobium, hafnium and tantalum using ICP-MS and new results for rock reference samples[J].Geochemical Journal, 2009, 43(2):133-141. doi: 10.2343/geochemj.1.0010

    CrossRef Google Scholar

    [52] Kamei A.Determination of trace element abundances in GSJ reference rock samples using lithium metaborate-lithium tetraborate fused solutions and inductively coupled plasma mass spectrometry[J].Geoscience Reports of Shimane University, 2016, 34:41-49.

    Google Scholar

    [53] Amosova A A, Panteeva S V, Chubarov V M, et al.Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2016, 122:62-68. doi: 10.1016/j.sab.2016.06.001

    CrossRef Google Scholar

    [54] 吴赫, 淮鑫斌, 韩张雄, 等.电感耦合等离子体质谱法测定地球化学样品中的铌和钽[J].光谱实验室, 2013, 30(5):2452-2456.

    Google Scholar

    Wu H, Huai X B, Han Z X, et al.Determination of niobium and tantalum in geological samples by inductively coupled plasma mass spectrometry[J].Chinese Journal of Spectroscopy Laboratory, 2013, 30(5):2452-2456.

    Google Scholar

    [55] 陆晓明, 金德龙, 胡莹.X射线荧光光谱法测定镍铬合金中15种元素[J].冶金分析, 2013, 33(10):49-55.

    Google Scholar

    Lu X M, Jin D L, Hu Y.Determination of fifteen elements in nickel-chromium alloy by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2013, 33(10):49-55.

    Google Scholar

    [56] 安身平, 王树安, 廖志海, 等.X射线荧光光谱法测定镍基合金中镍、铬、钼、铌含量[J].理化检验(化学分册), 2009, 45(11):1339-1340.

    Google Scholar

    An S P, Wang S A, Liao Z H, et al.Determination of nickel, chromium, molybdenum, niobium in the nickel base alloy by X-ray fluorescence spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2009, 45(11):1339-1340.

    Google Scholar

    [57] 彭慧仙.熔融制样-X射线荧光光谱法测定硬质合金中钨钴镍铁铌钽铬[J].冶金分析, 2015, 35(7):20-26.

    Google Scholar

    Peng H X.Determination of tungsten, cobalt, nickel, iron, niobium, tantalum and chromium in hard alloy X-ray fluorescence spectrometry with fusion samples preparation[J].Metallurgical Analysis, 2015, 35(7):20-26.

    Google Scholar

    [58] 邵常丽.X射线荧光光谱法测定铌铁中铌钽铜钛铝磷[J].冶金分析, 2017, 37(6):50-54.

    Google Scholar

    Shao C L.Determination of niobium, tantalum, copper, titanium, aluminum and phosphorus in ferro-niobium by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2017, 37(6):50-54.

    Google Scholar

    [59] Viswanathan S, Anjan C, Yamuna S.Wavelength-disper-sive X-ray fluorescence spectrometric determination of tantalum in columbite-tantalite using Ta Kα and an LiF 420 analysing crystal[J].Journal Geological Society of India, 2010, 76(2):171-174. doi: 10.1007/s12594-010-0091-z

    CrossRef Google Scholar

    [60] 陈静.X射线荧光光谱法测定地质样品中铌和钽的探讨[J].冶金分析, 2015, 35(10):24-29.

    Google Scholar

    Chen J.Discussion on the determination ofniobium and tantalum in geological samples by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2015, 35(10):24-29.

    Google Scholar

    [61] 吉昂.X射线荧光光谱三十年[J].岩矿测试, 2012, 31(3):383-398.

    Google Scholar

    Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3):383-398.

    Google Scholar

    [62] 刘江斌, 赵峰, 余宇, 等.X射线荧光光谱法同时测定地质样品中铌钽锆铪铈镓钪铀等稀有元素[J].岩矿测试, 2010, 29(1):74-76.

    Google Scholar

    Liu J B, Zhao F, Yu Y, et al.Simultaneous determination of Nb, Ta, Zr, Hf, Ce, Ga, Sc and U in geological samples by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2010, 29(1):74-76.

    Google Scholar

    [63] Krishna A K, Khanna T C, Mohan K R.Rapid quan-titative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2016, 122:165-171. doi: 10.1016/j.sab.2016.07.004

    CrossRef Google Scholar

    [64] 刘丽莉, 王洪艳, 李俊峰.流动注射化学发光法测定复杂物料中的铌和钽[J].现代科学仪器, 2002(1):48-50.

    Google Scholar

    Liu L L, Wang H Y, Li J F.Determination of niobium and tantalum in complex samples by flow injection chemiluminescence method[J].Modern Scientific Instruments, 2002(1):48-50.

    Google Scholar

    [65] Klos A, Aleksiayenak Y A, Ziembik Z, et al.The use of neutron activation analysis in the biomonitoring of trace element deposition in the opole province[J].Ecological Chemistry and Engineering S, 2013, 20(4):677-678.

    Google Scholar

    [66] Hunt A M W, Dvoracek D, Glascock M D, et al.Major, minor and trace element mass fractions determined using ED-XRF, WD-XRF and INAA for three synthetic mullite reference materials (NCS HC 14807; NCS HC 14808; and NCS HC 14809) and five stream sediment reference materials(GBW07302; GBW07310; GBW07311; GBW07312; and GBW07405)[J].Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(1):1005-1007. doi: 10.1007/s10967-014-3387-4

    CrossRef Google Scholar

    [67] Alharbi W R, El-Taher A. Elemental analysis and natural radioactivity levels of clay by gamma ray spectrometer and instrumental neutron activation analysis[J]. Science and Technology of Nuclear Installations, 2016, ID8726260: 1-5.https: //www. hindawi. com/journals/stni/2016/8726260/

    Google Scholar

    [68] Dampare S B, Nyarko B J B, Osae S, et al.Simultaneous determination of tantalum, niobium, thorium and uranium in placer columbite-tantalite deposits from the Akim Oda District of Ghana by epithermal instrumental neutron activation analysis[J].Journal of Radioanalytical and Nuclear Chemistry, 2005, 265(1):53-59. doi: 10.1007/s10967-005-0860-0

    CrossRef Google Scholar

    [69] El-Taher A.Elemental analysis of granite by instrumental neutron activation analysis(INAA) and X-ray fluorescence analysis(XRF)[J].Applied Radiation Isotope, 2012, 70(1):350-354. doi: 10.1016/j.apradiso.2011.09.008

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(2)

Article Metrics

Article views(6356) PDF downloads(288) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint