Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 2
Article Contents

CHEN Zhou, YU Xi, YANG Ting, ZHANG Pengpeng, LI Mingyang. Dissolution Patterns of Fe3+ and Mg2+ from the Surfaces of Specularite and Chlorite and Their Effects on Floatability[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 108-115. doi: 10.13779/j.cnki.issn1001-0076.2025.02.009
Citation: CHEN Zhou, YU Xi, YANG Ting, ZHANG Pengpeng, LI Mingyang. Dissolution Patterns of Fe3+ and Mg2+ from the Surfaces of Specularite and Chlorite and Their Effects on Floatability[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 108-115. doi: 10.13779/j.cnki.issn1001-0076.2025.02.009

Dissolution Patterns of Fe3+ and Mg2+ from the Surfaces of Specularite and Chlorite and Their Effects on Floatability

More Information
  • During the separation process of specularite/chlorite, the dissolution of metal ions on the mineral surface can affect the floatability of the minerals. Using ICP, conductivity measurements, and single mineral flotation tests, the dissolution patterns of Fe3+ and Mg2+ ions from the surfaces of specularite and chlorite and their effect on floatability were investigated y. Additionally, by combining Zeta potential measurements and lgc−pH analysis, the inhibition mechanisms of Fe3+ and Mg2+ on specularite and chlorite were studied. The results showed that Fe3+ and Mg2+ exhibited a trend of increasing followed by decreasing with dissolution time, and the dissolution amount of Fe3+ from the chlorite surface was significantly higher than that of Fe3+. In addition, the total ion concentration in the solution decreased continuously as the pH of the solution increased. Both Fe3+ and Mg2+ had certain inhibitory effect on specularite and chlorite, but Fe3+ had a stronger inhibitory effect. Under conditions where the Fe3+ concentration was 3.11 mg/L and pH=6, the recovery rates of specularite and chlorite decreased to 10.23% and 13.35%, respectively. Fe3+ primarily inhibits minerals through the adsorption of hydrophilic Fe(OH)3 precipitates, while Mg2+ mainly increases the electrostatic repulsion between mineral particles and DDA through adsorption in the form of Mg2+, resulting in decreased mineral floatability.

  • 加载中
  • [1] 韩跃新, 张小龙, 高鹏, 等. 中国铁矿石选矿技术发展与展望[J]. 金属矿山, 2024(2): 1−24.

    Google Scholar

    HAN Y X, ZHANG X L, GAO P, et al. Development and prospect of iron ore processing technologies in china[J]. Metal Mine, 2024(2): 1−24.

    Google Scholar

    [2] 雷岩, 杜清坤, 郑镝. 铁矿资源形势分析及对策研究[J]. 中国国土资源经济, 2014, 27(12): 15−19.

    Google Scholar

    LEI Y, DU Q K, ZHENG D. Iron ore resources situation analysis and countermeasure research[J]. Chinese Land and Resource Economics, 2014, 27(12): 15−19.

    Google Scholar

    [3] 李东, 李正要, 印万忠, 等. 粒度大小对赤铁矿和石英浮选分离的影响[J]. 工程科学学报, 2020, 42(5): 586−594.

    Google Scholar

    LI D, LI Z Y, YIN W Z, et al. Effect of particle size on flotation separation of hematite and quartz[J]. Chinese Journal of Engineering, 2020, 42(5): 586−594

    Google Scholar

    [4] 梅光军, 薛玉兰, 余永富. 赤铁矿与含铁硅酸盐浮选分离的研究进展与前景[J]. 金属矿山, 1999(3): 25−29.

    Google Scholar

    MEI G J, XUE Y L, YU Y F. Advance in the study on flotation separation of hematite from iron−containing silicates and its prospect[J]. Metal Mine, 1999(3): 25−29.

    Google Scholar

    [5] 杨任新, 董亚宁, 李明阳, 等. 霓石、镜铁矿晶体各向异性及粒度差异对可浮性的影响[J]. 金属矿山, 2020(12): 101−107.

    Google Scholar

    YANG R X, DONG Y N, LI M Y, et al. Effect of crystalanisotropy and size fraction difference on the floatability of specularite and aegirite[J]. Metal Mine, 2020(12): 101−107.

    Google Scholar

    [6] 查显维. 铁矿石阴离子反浮选体系中各药剂浮选特性研究[D]. 马鞍山: 安徽工业大学, 2019.

    Google Scholar

    ZHA X W. Study on flotation characteristics of agents in anion reverse flotationsystem of iron ore[D]. Maanshan: Anhui University of Technology, 2019.

    Google Scholar

    [7] 陈雯. 贫细杂难选铁矿石选矿技术进展[J]. 金属矿山, 2010(5): 55−59.

    Google Scholar

    CHEN W. Technological progress in processing low−grade fine−grained complicated refractory ironores[J]. Metal Mine, 2010(5): 55−59.

    Google Scholar

    [8] 罗溪梅, 马鸣泽, 孙传尧, 等. 铁矿石浮选体系中矿物交互影响的作用形式[J]. 中国矿业大学学报, 2018, 47(3): 645−651.

    Google Scholar

    LUO X M, MA M Z, SUN C Y, et al. Interaction forms among minerals in iron ore flotation system[J]. Journal of China University of Mining & Technology, 2018, 47(3): 645−651.

    Google Scholar

    [9] 陈建华. 浮选捕收剂的结构及其作用机理研究[J]. 矿产保护与利用, 2017(4): 98−106.

    Google Scholar

    CHEN J H. Structure and mechanism of flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2017(4): 98−106.

    Google Scholar

    [10] KAPIAMBA K F, KIMPIAB M. The effects of partially replacing amine collectors by a commercial frother in a reverse cationic hematite flotation[J]. Heliyon, 2021(3): 142−164

    Google Scholar

    [11] 刘星, 张晋霞, 徐亮, 等. 金属离子对赤铁矿、石英、绿泥石可浮性的影响[J]. 西部探矿工程, 2016(7): 93−96.

    Google Scholar

    LIU X, ZHANG J X, XU L, et al. Effect of metal Ions on the flotability of hematite, quartz and chlorite[J]. Western Mining Engineering, 2016(7): 93−96.

    Google Scholar

    [12] ZHAO K, GU G, WANG X, et al. The effect of depressant sesbaniagum on the flotation of a talc−containing scheelite ore[J]. Journal of Materials Research and Technology, 2019, 8(1): 14−21. doi: 10.1016/j.jmrt.2018.01.006

    CrossRef Google Scholar

    [13] 伍喜庆, 王志熙, 岳涛. 铁离子淀粉配合物在某铁矿石反浮选中的抑制行为及机理[J]. 金属矿山, 2017(11): 70−74.

    Google Scholar

    WU X Q, WANG Z X, YUE T, et al. Study on depressing effect and mechanism of ferric−starch complex in reverse flotation of an iron mine[J]. Metal Mine, 2017(11): 70−74.

    Google Scholar

    [14] 李明阳, 廉德, 郝军杰, 等. 水中Ca2+和Mg2+对镜铁矿和绿泥石可浮性的影响机理[J]. 过程工程学报, 2020, 20(8): 959−969.

    Google Scholar

    LI M Y, LIAN D, HAO J J, et al. Effect mechanism of Ca2+ and Mg2+ in water on the floatability of specularite and chlorite[J]. The Chinese Journal of Process Engineering, 2020, 20(8): 959−969.

    Google Scholar

    [15] CHEN J H, AO X Q, XIE Y, et al. Effects of iron ion dissolution and migration from phosphorite on the surface properties of dolomite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128618. doi: 10.1016/j.colsurfa.2022.128618

    CrossRef Google Scholar

    [16] 李明阳, 陈泽, 胡义明, 等. 霓石溶出金属离子对镜铁矿、霓石可浮性的影响[J]. 金属矿山, 2019(4): 53−57.

    Google Scholar

    LI M Y, CHEN Z, HU Y M, et al. Effect of dissolved metal ions from aegirite on the floatability of specularite and aegirite[J]. Metal Mine, 2019(4): 53−57.

    Google Scholar

    [17] ZHU X, LIN Y, HUANG Y, et al. Adsorption of ferric ions on the surface of bastnaesite and its significance in flotation[J]. Minerals Engineering, 2020, 158: 106588. doi: 10.1016/j.mineng.2020.106588

    CrossRef Google Scholar

    [18] ZHU Y, ZHANG G, FENG Q, et al. Effect of surface dissolution on flotation separation of fine ilmenite from titanaugite[J]. Transactions of nonferrous metals society of china, 2011, 21(5): 1149−1154. doi: 10.1016/S1003-6326(11)60835-2

    CrossRef Google Scholar

    [19] 王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科技出版社, 1988.

    Google Scholar

    WANG D Z, HU Y H. Chemistry of flotation solutions[M]. Changsha: Hunan Science and Technology Press, 1988.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(60) PDF downloads(15) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint