Citation: | CHEN Zhou, YU Xi, YANG Ting, ZHANG Pengpeng, LI Mingyang. Dissolution Patterns of Fe3+ and Mg2+ from the Surfaces of Specularite and Chlorite and Their Effects on Floatability[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 108-115. doi: 10.13779/j.cnki.issn1001-0076.2025.02.009 |
During the separation process of specularite/chlorite, the dissolution of metal ions on the mineral surface can affect the floatability of the minerals. Using ICP, conductivity measurements, and single mineral flotation tests, the dissolution patterns of Fe3+ and Mg2+ ions from the surfaces of specularite and chlorite and their effect on floatability were investigated y. Additionally, by combining Zeta potential measurements and lgc−pH analysis, the inhibition mechanisms of Fe3+ and Mg2+ on specularite and chlorite were studied. The results showed that Fe3+ and Mg2+ exhibited a trend of increasing followed by decreasing with dissolution time, and the dissolution amount of Fe3+ from the chlorite surface was significantly higher than that of Fe3+. In addition, the total ion concentration in the solution decreased continuously as the pH of the solution increased. Both Fe3+ and Mg2+ had certain inhibitory effect on specularite and chlorite, but Fe3+ had a stronger inhibitory effect. Under conditions where the Fe3+ concentration was 3.11 mg/L and pH=6, the recovery rates of specularite and chlorite decreased to 10.23% and 13.35%, respectively. Fe3+ primarily inhibits minerals through the adsorption of hydrophilic Fe(OH)3 precipitates, while Mg2+ mainly increases the electrostatic repulsion between mineral particles and DDA through adsorption in the form of Mg2+, resulting in decreased mineral floatability.
[1] | 韩跃新, 张小龙, 高鹏, 等. 中国铁矿石选矿技术发展与展望[J]. 金属矿山, 2024(2): 1−24. HAN Y X, ZHANG X L, GAO P, et al. Development and prospect of iron ore processing technologies in china[J]. Metal Mine, 2024(2): 1−24. |
[2] | 雷岩, 杜清坤, 郑镝. 铁矿资源形势分析及对策研究[J]. 中国国土资源经济, 2014, 27(12): 15−19. LEI Y, DU Q K, ZHENG D. Iron ore resources situation analysis and countermeasure research[J]. Chinese Land and Resource Economics, 2014, 27(12): 15−19. |
[3] | 李东, 李正要, 印万忠, 等. 粒度大小对赤铁矿和石英浮选分离的影响[J]. 工程科学学报, 2020, 42(5): 586−594. LI D, LI Z Y, YIN W Z, et al. Effect of particle size on flotation separation of hematite and quartz[J]. Chinese Journal of Engineering, 2020, 42(5): 586−594 |
[4] | 梅光军, 薛玉兰, 余永富. 赤铁矿与含铁硅酸盐浮选分离的研究进展与前景[J]. 金属矿山, 1999(3): 25−29. MEI G J, XUE Y L, YU Y F. Advance in the study on flotation separation of hematite from iron−containing silicates and its prospect[J]. Metal Mine, 1999(3): 25−29. |
[5] | 杨任新, 董亚宁, 李明阳, 等. 霓石、镜铁矿晶体各向异性及粒度差异对可浮性的影响[J]. 金属矿山, 2020(12): 101−107. YANG R X, DONG Y N, LI M Y, et al. Effect of crystalanisotropy and size fraction difference on the floatability of specularite and aegirite[J]. Metal Mine, 2020(12): 101−107. |
[6] | 查显维. 铁矿石阴离子反浮选体系中各药剂浮选特性研究[D]. 马鞍山: 安徽工业大学, 2019. ZHA X W. Study on flotation characteristics of agents in anion reverse flotationsystem of iron ore[D]. Maanshan: Anhui University of Technology, 2019. |
[7] | 陈雯. 贫细杂难选铁矿石选矿技术进展[J]. 金属矿山, 2010(5): 55−59. CHEN W. Technological progress in processing low−grade fine−grained complicated refractory ironores[J]. Metal Mine, 2010(5): 55−59. |
[8] | 罗溪梅, 马鸣泽, 孙传尧, 等. 铁矿石浮选体系中矿物交互影响的作用形式[J]. 中国矿业大学学报, 2018, 47(3): 645−651. LUO X M, MA M Z, SUN C Y, et al. Interaction forms among minerals in iron ore flotation system[J]. Journal of China University of Mining & Technology, 2018, 47(3): 645−651. |
[9] | 陈建华. 浮选捕收剂的结构及其作用机理研究[J]. 矿产保护与利用, 2017(4): 98−106. CHEN J H. Structure and mechanism of flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2017(4): 98−106. |
[10] | KAPIAMBA K F, KIMPIAB M. The effects of partially replacing amine collectors by a commercial frother in a reverse cationic hematite flotation[J]. Heliyon, 2021(3): 142−164 |
[11] | 刘星, 张晋霞, 徐亮, 等. 金属离子对赤铁矿、石英、绿泥石可浮性的影响[J]. 西部探矿工程, 2016(7): 93−96. LIU X, ZHANG J X, XU L, et al. Effect of metal Ions on the flotability of hematite, quartz and chlorite[J]. Western Mining Engineering, 2016(7): 93−96. |
[12] | ZHAO K, GU G, WANG X, et al. The effect of depressant sesbaniagum on the flotation of a talc−containing scheelite ore[J]. Journal of Materials Research and Technology, 2019, 8(1): 14−21. doi: 10.1016/j.jmrt.2018.01.006 |
[13] | 伍喜庆, 王志熙, 岳涛. 铁离子淀粉配合物在某铁矿石反浮选中的抑制行为及机理[J]. 金属矿山, 2017(11): 70−74. WU X Q, WANG Z X, YUE T, et al. Study on depressing effect and mechanism of ferric−starch complex in reverse flotation of an iron mine[J]. Metal Mine, 2017(11): 70−74. |
[14] | 李明阳, 廉德, 郝军杰, 等. 水中Ca2+和Mg2+对镜铁矿和绿泥石可浮性的影响机理[J]. 过程工程学报, 2020, 20(8): 959−969. LI M Y, LIAN D, HAO J J, et al. Effect mechanism of Ca2+ and Mg2+ in water on the floatability of specularite and chlorite[J]. The Chinese Journal of Process Engineering, 2020, 20(8): 959−969. |
[15] | CHEN J H, AO X Q, XIE Y, et al. Effects of iron ion dissolution and migration from phosphorite on the surface properties of dolomite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128618. doi: 10.1016/j.colsurfa.2022.128618 |
[16] | 李明阳, 陈泽, 胡义明, 等. 霓石溶出金属离子对镜铁矿、霓石可浮性的影响[J]. 金属矿山, 2019(4): 53−57. LI M Y, CHEN Z, HU Y M, et al. Effect of dissolved metal ions from aegirite on the floatability of specularite and aegirite[J]. Metal Mine, 2019(4): 53−57. |
[17] | ZHU X, LIN Y, HUANG Y, et al. Adsorption of ferric ions on the surface of bastnaesite and its significance in flotation[J]. Minerals Engineering, 2020, 158: 106588. doi: 10.1016/j.mineng.2020.106588 |
[18] | ZHU Y, ZHANG G, FENG Q, et al. Effect of surface dissolution on flotation separation of fine ilmenite from titanaugite[J]. Transactions of nonferrous metals society of china, 2011, 21(5): 1149−1154. doi: 10.1016/S1003-6326(11)60835-2 |
[19] | 王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科技出版社, 1988. WANG D Z, HU Y H. Chemistry of flotation solutions[M]. Changsha: Hunan Science and Technology Press, 1988. |
XRD pattern of specularite (a) and chlorite (b)
Flowsheet of single mineral flotation experiment
Effect of dissolution time on dissolved ion concentration of specularite
Effect of dissolution time on dissolved ion concentration of chlorite
Effect of pH value of solution on dissolved ion quantity of specularite (a) and chlorite (b)
Effect of mineral dissolution time on the conductivity of solution under different pH values
Effect of Fe3+ concentration (a) and pulp pH (b) on the floatability of specularite and chlorite
Effect of Mg2+ concentration (a) and pulp pH (b) on the floatability of specularite and chlorite
Zeta potential on the surface of specularite (a) and chlorite (b)
Concentration logarithmic curve of Fe3+ and Mg2+ hydrolysis components