Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 2
Article Contents

QI Mengyao, SHA Jinting, LUO zhenkai, PENG Weijun, CAO Yijun, WANG Wei, ZHANG Longyu, HUANG Yukun. Effect and Mechanism of Ultrasonic Treatment of Polyacrylamide on Molybdenite Flotation[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 93-101. doi: 10.13779/j.cnki.issn1001-0076.2025.02.007
Citation: QI Mengyao, SHA Jinting, LUO zhenkai, PENG Weijun, CAO Yijun, WANG Wei, ZHANG Longyu, HUANG Yukun. Effect and Mechanism of Ultrasonic Treatment of Polyacrylamide on Molybdenite Flotation[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 93-101. doi: 10.13779/j.cnki.issn1001-0076.2025.02.007

Effect and Mechanism of Ultrasonic Treatment of Polyacrylamide on Molybdenite Flotation

More Information
  • The flotation process of molybdenum ore produces a large amount of mineral processing wastewater. To make the mineral processing wastewater meet the reuse requirements, the flocculant olyacrylamide (PAM) is usually added to accelerate the settlement of micro−grained slime so that the upper water can be reused. However, the accumulation of PAM in wastewater seriously depresses the flotation of molybdenite and reduces its recovery with the increase in the recycling times of mineral processing wastewater. The influence of PAM on molybdenite flotation behavior was investigated, and ultrasonic crushing technology was used to treat the mineral return water containing PAM. The influence rule and mechanism of the mineral return water containing PAM after ultrasonic treatment on the flotation behavior of molybdenite were investigated. The results showed that the presence of PAM greatly reduced the surface hydrophobicity of molybdenite and depressed the flotation of molybdenite, and the depression effect was enhanced with the increase of PAM mass concentration. The floatability of molybdenite recovered after PAM was treated by ultrasound. The flotation recovery of molybdenite reached 68.63% after 5 mg/L PAM solution was ultrasonic treated for 9 min at 600 W power. Further study showed that the micro−gas nucleated cavitation bubbles in solution vibrate under ultrasonic, grow and collapse under a certain sound pressure. It is accompanied by the production of free radicals, which can crush and oxidize and degrade PAM, and the molecular weight of PAM decreased rapidly. Treatment of PAM by ultrasonic crushing technology could improve the reuse rate of molybdenum ore dressing wastewater, the flotation recovery of molybdenite, and the recycling efficiency of water resources.

  • 加载中
  • [1] 陈振国. 铅锌选矿废水处理及回用试验研究[J]. 湖南有色金属, 2024, 40(1): 106−109.

    Google Scholar

    CHEN Z G. Experimental study on wastewater treatment and reuse of a lead zinc mineral processing enterprise[J]. Hunan Nonferrous Metals, 2024, 40(1): 106−109.

    Google Scholar

    [2] 赵宇航. 淀粉对黄铜矿和辉钼矿浮选行为的影响及机理研究[D]. 昆明: 昆明理工大学, 2023: 1−3.

    Google Scholar

    ZHAO Y H, Effect of starch on flotation behavior of chalcopyrite and molybdenite and its mechanism[D]. Kunming: Kunming University of Science and Technology, 2023: 1−3.

    Google Scholar

    [3] 郑永兴, 黄宇松, 吕晋芳, 等. 有色金属选矿废水处理研究现状与进展[J]. 矿产综合利用, 2023(2): 177−183+190. doi: 10.3969/j.issn.1000-6532.2023.02.027

    CrossRef Google Scholar

    ZHENG Y X, HUANG Y S, LV J F, et. al. Research status and development of non−ferrous metal beneficiation wastewater treatment[J]. Multipurpose Utilization of Mineral Resources, 2023(2): 177−183+190. doi: 10.3969/j.issn.1000-6532.2023.02.027

    CrossRef Google Scholar

    [4] 宛鹤, 何廷树. 选钼废水性质及回用现状[J]. 中国钼业, 2016, 40(5): 11−15.

    Google Scholar

    WAN H, HE T S. Properties of molybdenum beneficiation wastewater and its reuse[J]. China Molybdenum Industry, 2016, 40(5): 11−15.

    Google Scholar

    [5] 吕帅, 彭伟军, 苗毅恒, 等. 聚丙烯酰胺类絮凝剂在矿业领域的研究进展[J]. 矿产保护与利用, 2021, 41(1): 79−84.

    Google Scholar

    LV S, PENG W J, MIAO Y H, et. al. Advances of polyacrylamide flocculants in mining industry[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 79−84.

    Google Scholar

    [6] CASTRO S, LASKOWSKI J S. Depressing effect of flocculants on molybdenite flotation[J]. Minerals Engineering, 2015, 74: 13−19. doi: 10.1016/j.mineng.2014.12.027

    CrossRef Google Scholar

    [7] ESTRADA D, ECHEVERRY L, RAMIREZ A, et al. Molybdenite flotation in the presence of a polyacrylamide of low anionicity subjected to different conditions of mechanical shearing[J]. Minerals, 2020, 10(10): 895. doi: 10.3390/min10100895

    CrossRef Google Scholar

    [8] 王珊珊, 尚保亚, 宋博溢, 等. 含聚丙烯酰胺污水处理技术的研究进展[J]. 生物加工过程, 2024, 22(2): 166−172. doi: 10.3969/j.issn.1672-3678.2024.02.006

    CrossRef Google Scholar

    WANG S S, SHANG B Y, SONG B Y, et al. Recent advances of treating polyacrylamide−containing sewage[J]. Chinese Journal of Bioprocess Engineering, 2024, 22(2): 166−172. doi: 10.3969/j.issn.1672-3678.2024.02.006

    CrossRef Google Scholar

    [9] WEN Q X, ZHANG H C, CHEN Z Q, et al. Bioaugmentation for polyacrylamide degradation in a sequencing batch reactor and contact oxidation reactor[J]. Journal of Environmental Science & Health, 2012, 47(3): 358−365.

    Google Scholar

    [10] 詹亚力, 杜娜, 郭绍辉. 聚丙烯酰胺水溶液的氧化降解作用研究[J]. 石油大学学报(自然科学版), 2005(2): 108−111+120.

    Google Scholar

    ZHAN Y L, DU N, GUO S H. Oxidative degradation of partially hydrolyzed polyacrylamide in aqueous solution[J]. Journal of China University of Petroleum(Edition of Natural Science), 2005(2): 108−111+120.

    Google Scholar

    [11] 孙鼎承, 李志励. Fenton法氧化降解油田污水中聚丙烯酰胺的研究[J]. 化学工程师, 2014, 28(6): 66−69.

    Google Scholar

    SUN D C, LI Z L. Study on the oxidative degradation of HPAM in oilfiled sewage by Fenton's peroxidation[J]. Chemical Engineer, 2014, 28(6): 66−69.

    Google Scholar

    [12] 尚会建, 周艳丽, 赵彦, 等. 活性炭催化臭氧氧化处理低浓度氨氮废水[J]. 化工环保, 2012, 32(5): 405−408.

    Google Scholar

    SHANG H J, ZHOU Y L, ZHAO Y, et al. Treatment of low concentration ammonia nitrogen wastewater by ozone oxidation catalyzed by activated carbon[J]. Environmental Protection of Chemical Industry, 2012, 32(5): 405−408.

    Google Scholar

    [13] CAULFIELD M J, HAO X, QIAO G G, et al. Degradation on polyacrylamides[J]. Polymer, 2003, 44(5): 1331−1337. doi: 10.1016/S0032-3861(03)00003-X

    CrossRef Google Scholar

    [14] 赵东松. 聚丙烯酰胺废水电催化氧化处理技术研究[D]. 北京: 中国石油大学(北京), 2022: 10−12.

    Google Scholar

    ZHAO D S. Study on treatment of PAM wastewater by electrochemical oxidation[D]. Beijing: China University of Petroleum (Beijing), 2022: 10−12.

    Google Scholar

    [15] 杨逸. 电Fenton降解聚丙烯酰胺废水研究[D]. 荆州: 长江大学, 2023: 13−15.

    Google Scholar

    YANG Y. Study on degradation of polyacrylamide wastewater by electro−Fenton process[D]. Jingzhou: Yangtze University, 2023: 13−15.

    Google Scholar

    [16] 王泉, 祝宏平, 李洁冰, 等. 超声波降解油田含聚污水研究进展[J]. 声学技术, 2018, 37(2): 141−145.

    Google Scholar

    WANG Q, ZHU H P, LI J B, et al. Research progress in ultrasonic degradation technique of polymer−bearing oilfield wastewater[J]. Technical Acoustics, 2018, 37(2): 141−145.

    Google Scholar

    [17] YEN H Y, YANG M H. The ultrasonic degradation of polyacrylamide solution[J]. Polymer Testing, 2003, 22(2): 129−131. doi: 10.1016/S0142-9418(02)00054-5

    CrossRef Google Scholar

    [18] A·布尔顿, 白秀梅, 雨田. 用聚丙烯酰胺聚合物选择性抑制黄铁矿[J]. 国外金属矿选矿, 2001(3): 36−38+31.

    Google Scholar

    A·BURTON, BAI X M, YU T. Selective inhibition of pyrite with polyacrylamide polymer[J]. Metallic Ore Dressing Abroad, 2018, 37(3): 141−145.

    Google Scholar

    [19] 孙士强. 金堆城钼精矿浮选提纯试验研究[D]. 徐州: 中国矿业大学, 2016: 21−22.

    Google Scholar

    SUN S Q. Experimental research on flotation purification of molybdenum concentrationfrom Jinduicheng plant[D]. Xuzhou: China University of Mining and Technology, 2016: 21−22.

    Google Scholar

    [20] 马江雅, 郑怀礼, 卢伟, 等. 紫外光引发合成阴离子聚丙烯酰胺及其表征[J]. 光谱学与光谱分析, 2012, 32(12): 3385−3389. doi: 10.3964/j.issn.1000-0593(2012)12-3385-05

    CrossRef Google Scholar

    MA J Y, ZHENG H L, LU W, et al. Ultraviolet−initiated synthesis and characterization of anionic polyacrylamide[J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3385−3389. doi: 10.3964/j.issn.1000-0593(2012)12-3385-05

    CrossRef Google Scholar

    [21] 张荣庆. 电化学反应器设计及用于处理含聚丙烯酰胺污水的研究[D]. 大庆: 东北石油大学, 2007: 44−45.

    Google Scholar

    ZHANG R Q. Treatment of wastewater containing HPAM using electrochemical reactor[D]. Daqing: Northeast Petroleum University, 2007: 44−45.

    Google Scholar

    [22] YUAN D, CADIEN K, LIU Q, et al. Separation of talc and molybdenite: challenges and opportunities[J]. Minerals Engineering, 2019, 143: 105923. doi: 10.1016/j.mineng.2019.105923

    CrossRef Google Scholar

    [23] 李晔, 彭勇军, 刘奇, 等. 多糖在硫化矿物浮选中的应用及其作用机理[J]. 武汉化工学院学报, 1998(2): 41−45.

    Google Scholar

    LI Y, PENG Y J, LIU Q, et al. Application and mechanism of polysaccharide in flotation of sulfide minerals[J]. Journal of Wuhan Institute of Technology, 1998(2): 41−45.

    Google Scholar

    [24] HAO J, LIU J, YU Y, et al. Depressants for separation of chalcopyrite and molybdenite: Review and prospects[J]. Minerals Engineering, 2023, 201: 108209. doi: 10.1016/j.mineng.2023.108209

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(117) PDF downloads(24) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint