Citation: | QI Mengyao, SHA Jinting, LUO zhenkai, PENG Weijun, CAO Yijun, WANG Wei, ZHANG Longyu, HUANG Yukun. Effect and Mechanism of Ultrasonic Treatment of Polyacrylamide on Molybdenite Flotation[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 93-101. doi: 10.13779/j.cnki.issn1001-0076.2025.02.007 |
The flotation process of molybdenum ore produces a large amount of mineral processing wastewater. To make the mineral processing wastewater meet the reuse requirements, the flocculant olyacrylamide (PAM) is usually added to accelerate the settlement of micro−grained slime so that the upper water can be reused. However, the accumulation of PAM in wastewater seriously depresses the flotation of molybdenite and reduces its recovery with the increase in the recycling times of mineral processing wastewater. The influence of PAM on molybdenite flotation behavior was investigated, and ultrasonic crushing technology was used to treat the mineral return water containing PAM. The influence rule and mechanism of the mineral return water containing PAM after ultrasonic treatment on the flotation behavior of molybdenite were investigated. The results showed that the presence of PAM greatly reduced the surface hydrophobicity of molybdenite and depressed the flotation of molybdenite, and the depression effect was enhanced with the increase of PAM mass concentration. The floatability of molybdenite recovered after PAM was treated by ultrasound. The flotation recovery of molybdenite reached 68.63% after 5 mg/L PAM solution was ultrasonic treated for 9 min at 600 W power. Further study showed that the micro−gas nucleated cavitation bubbles in solution vibrate under ultrasonic, grow and collapse under a certain sound pressure. It is accompanied by the production of free radicals, which can crush and oxidize and degrade PAM, and the molecular weight of PAM decreased rapidly. Treatment of PAM by ultrasonic crushing technology could improve the reuse rate of molybdenum ore dressing wastewater, the flotation recovery of molybdenite, and the recycling efficiency of water resources.
[1] | 陈振国. 铅锌选矿废水处理及回用试验研究[J]. 湖南有色金属, 2024, 40(1): 106−109. CHEN Z G. Experimental study on wastewater treatment and reuse of a lead zinc mineral processing enterprise[J]. Hunan Nonferrous Metals, 2024, 40(1): 106−109. |
[2] | 赵宇航. 淀粉对黄铜矿和辉钼矿浮选行为的影响及机理研究[D]. 昆明: 昆明理工大学, 2023: 1−3. ZHAO Y H, Effect of starch on flotation behavior of chalcopyrite and molybdenite and its mechanism[D]. Kunming: Kunming University of Science and Technology, 2023: 1−3. |
[3] | 郑永兴, 黄宇松, 吕晋芳, 等. 有色金属选矿废水处理研究现状与进展[J]. 矿产综合利用, 2023(2): 177−183+190. doi: 10.3969/j.issn.1000-6532.2023.02.027 ZHENG Y X, HUANG Y S, LV J F, et. al. Research status and development of non−ferrous metal beneficiation wastewater treatment[J]. Multipurpose Utilization of Mineral Resources, 2023(2): 177−183+190. doi: 10.3969/j.issn.1000-6532.2023.02.027 |
[4] | 宛鹤, 何廷树. 选钼废水性质及回用现状[J]. 中国钼业, 2016, 40(5): 11−15. WAN H, HE T S. Properties of molybdenum beneficiation wastewater and its reuse[J]. China Molybdenum Industry, 2016, 40(5): 11−15. |
[5] | 吕帅, 彭伟军, 苗毅恒, 等. 聚丙烯酰胺类絮凝剂在矿业领域的研究进展[J]. 矿产保护与利用, 2021, 41(1): 79−84. LV S, PENG W J, MIAO Y H, et. al. Advances of polyacrylamide flocculants in mining industry[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 79−84. |
[6] | CASTRO S, LASKOWSKI J S. Depressing effect of flocculants on molybdenite flotation[J]. Minerals Engineering, 2015, 74: 13−19. doi: 10.1016/j.mineng.2014.12.027 |
[7] | ESTRADA D, ECHEVERRY L, RAMIREZ A, et al. Molybdenite flotation in the presence of a polyacrylamide of low anionicity subjected to different conditions of mechanical shearing[J]. Minerals, 2020, 10(10): 895. doi: 10.3390/min10100895 |
[8] | 王珊珊, 尚保亚, 宋博溢, 等. 含聚丙烯酰胺污水处理技术的研究进展[J]. 生物加工过程, 2024, 22(2): 166−172. doi: 10.3969/j.issn.1672-3678.2024.02.006 WANG S S, SHANG B Y, SONG B Y, et al. Recent advances of treating polyacrylamide−containing sewage[J]. Chinese Journal of Bioprocess Engineering, 2024, 22(2): 166−172. doi: 10.3969/j.issn.1672-3678.2024.02.006 |
[9] | WEN Q X, ZHANG H C, CHEN Z Q, et al. Bioaugmentation for polyacrylamide degradation in a sequencing batch reactor and contact oxidation reactor[J]. Journal of Environmental Science & Health, 2012, 47(3): 358−365. |
[10] | 詹亚力, 杜娜, 郭绍辉. 聚丙烯酰胺水溶液的氧化降解作用研究[J]. 石油大学学报(自然科学版), 2005(2): 108−111+120. ZHAN Y L, DU N, GUO S H. Oxidative degradation of partially hydrolyzed polyacrylamide in aqueous solution[J]. Journal of China University of Petroleum(Edition of Natural Science), 2005(2): 108−111+120. |
[11] | 孙鼎承, 李志励. Fenton法氧化降解油田污水中聚丙烯酰胺的研究[J]. 化学工程师, 2014, 28(6): 66−69. SUN D C, LI Z L. Study on the oxidative degradation of HPAM in oilfiled sewage by Fenton's peroxidation[J]. Chemical Engineer, 2014, 28(6): 66−69. |
[12] | 尚会建, 周艳丽, 赵彦, 等. 活性炭催化臭氧氧化处理低浓度氨氮废水[J]. 化工环保, 2012, 32(5): 405−408. SHANG H J, ZHOU Y L, ZHAO Y, et al. Treatment of low concentration ammonia nitrogen wastewater by ozone oxidation catalyzed by activated carbon[J]. Environmental Protection of Chemical Industry, 2012, 32(5): 405−408. |
[13] | CAULFIELD M J, HAO X, QIAO G G, et al. Degradation on polyacrylamides[J]. Polymer, 2003, 44(5): 1331−1337. doi: 10.1016/S0032-3861(03)00003-X |
[14] | 赵东松. 聚丙烯酰胺废水电催化氧化处理技术研究[D]. 北京: 中国石油大学(北京), 2022: 10−12. ZHAO D S. Study on treatment of PAM wastewater by electrochemical oxidation[D]. Beijing: China University of Petroleum (Beijing), 2022: 10−12. |
[15] | 杨逸. 电Fenton降解聚丙烯酰胺废水研究[D]. 荆州: 长江大学, 2023: 13−15. YANG Y. Study on degradation of polyacrylamide wastewater by electro−Fenton process[D]. Jingzhou: Yangtze University, 2023: 13−15. |
[16] | 王泉, 祝宏平, 李洁冰, 等. 超声波降解油田含聚污水研究进展[J]. 声学技术, 2018, 37(2): 141−145. WANG Q, ZHU H P, LI J B, et al. Research progress in ultrasonic degradation technique of polymer−bearing oilfield wastewater[J]. Technical Acoustics, 2018, 37(2): 141−145. |
[17] | YEN H Y, YANG M H. The ultrasonic degradation of polyacrylamide solution[J]. Polymer Testing, 2003, 22(2): 129−131. doi: 10.1016/S0142-9418(02)00054-5 |
[18] | A·布尔顿, 白秀梅, 雨田. 用聚丙烯酰胺聚合物选择性抑制黄铁矿[J]. 国外金属矿选矿, 2001(3): 36−38+31. A·BURTON, BAI X M, YU T. Selective inhibition of pyrite with polyacrylamide polymer[J]. Metallic Ore Dressing Abroad, 2018, 37(3): 141−145. |
[19] | 孙士强. 金堆城钼精矿浮选提纯试验研究[D]. 徐州: 中国矿业大学, 2016: 21−22. SUN S Q. Experimental research on flotation purification of molybdenum concentrationfrom Jinduicheng plant[D]. Xuzhou: China University of Mining and Technology, 2016: 21−22. |
[20] | 马江雅, 郑怀礼, 卢伟, 等. 紫外光引发合成阴离子聚丙烯酰胺及其表征[J]. 光谱学与光谱分析, 2012, 32(12): 3385−3389. doi: 10.3964/j.issn.1000-0593(2012)12-3385-05 MA J Y, ZHENG H L, LU W, et al. Ultraviolet−initiated synthesis and characterization of anionic polyacrylamide[J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3385−3389. doi: 10.3964/j.issn.1000-0593(2012)12-3385-05 |
[21] | 张荣庆. 电化学反应器设计及用于处理含聚丙烯酰胺污水的研究[D]. 大庆: 东北石油大学, 2007: 44−45. ZHANG R Q. Treatment of wastewater containing HPAM using electrochemical reactor[D]. Daqing: Northeast Petroleum University, 2007: 44−45. |
[22] | YUAN D, CADIEN K, LIU Q, et al. Separation of talc and molybdenite: challenges and opportunities[J]. Minerals Engineering, 2019, 143: 105923. doi: 10.1016/j.mineng.2019.105923 |
[23] | 李晔, 彭勇军, 刘奇, 等. 多糖在硫化矿物浮选中的应用及其作用机理[J]. 武汉化工学院学报, 1998(2): 41−45. LI Y, PENG Y J, LIU Q, et al. Application and mechanism of polysaccharide in flotation of sulfide minerals[J]. Journal of Wuhan Institute of Technology, 1998(2): 41−45. |
[24] | HAO J, LIU J, YU Y, et al. Depressants for separation of chalcopyrite and molybdenite: Review and prospects[J]. Minerals Engineering, 2023, 201: 108209. doi: 10.1016/j.mineng.2023.108209 |
Relative molecular weight distribution of 5 mg/L PAM solution
Flotation flow chart
Effect of PAM mass concentration on flotation recovery of molybdenite
Effect of emulsified kerosene dosage on flotation recovery of molybdenite
Effect of PAM on flotation recovery of molybdenite after different ultrasonic power treatment
Effect of PAM on flotation recovery of molybdenite after different ultrasonic treatment time
Effect of emulsified kerosene concentration on flotation recovery of molybdenite
UV spectral changes of PAM with different mass concentrations at 400 W power(a—5 mg/L;b—7.5 mg/L;c—10 mg/L)
UV spectral changes of PAM with different mass concentrations at 200 W power(a—5 mg/L;b—7.5 mg/L;c—10 mg/L)
UV spectral changes of PAM with different mass concentrations at 800 W power(a—5 mg/L;b—7.5 mg/L;c—10 mg/L)
UV spectral changes of PAM with different mass concentrations at 600 W power(a—5 mg/L;b—7.5 mg/L;c—10 mg/L)
Molecular weight distribution of 5 mg/L PAM after ultrasonic treatment with 600 W power for 9 min
Zeta potential of PAM, PAM after ultrasonic treatment, molybdenite, molybdenite+PAM, molybdenite+ PAM after ultrasonic treatment at different pH
Contact angle of molybdenite under different conditions