Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 2
Article Contents

YUAN Jinming, LIU Lei. A Review on Microcrystalline Graphite Purification and Deep Processing Product[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 125-134. doi: 10.13779/j.cnki.issn1001-0076.2024.08.029
Citation: YUAN Jinming, LIU Lei. A Review on Microcrystalline Graphite Purification and Deep Processing Product[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 125-134. doi: 10.13779/j.cnki.issn1001-0076.2024.08.029

A Review on Microcrystalline Graphite Purification and Deep Processing Product

More Information
  • China's microcrystalline graphite has been occupying an important position in the international microcrystalline graphite market because of the advantages of high grade and good quality. However, due to the lack of long−term theoretical research and capital investment, China's microcrystalline graphite deep−processing technology in the relevant fields is still relatively blank, which leads to most of the domestic graphite mining company still stays in the microcrystalline graphite ore direct utilization or primary processing of raw ore into low value−added products for sale stage. And in recent years, microcrystalline graphite in lithium−ion battery anode materials and anisotropic graphite materials and other areas of application potential mining has also made it receive more and more attention. Therefore, how to protect and scientifically utilize microcrystalline graphite as a valuable resource has become an urgent problem to be solved nowadays. Taking the structure, properties and resource distribution of graphite as a starting point, this paper reviews the principles and characteristics of various purification methods of microcrystalline graphite, and outlines the research status of various purification methods. In addition, the research on the application of microcrystalline graphite in anode materials for lithium−ion batteries and isotropic graphite materials is also introduced. Finally, it is pointed out that the purification and modification of microcrystalline graphite is the key to realize the deep processing of microcrystalline graphite to prepare high value−added products.

  • 加载中
  • [1] 饶娟, 张盼, 何帅, 等. 天然石墨利用现状及石墨制品综述[J]. 中国科学(技术科学), 2017, 47(1): 13−31. doi: 10.1360/N092015-00380

    CrossRef Google Scholar

    RAO J, ZHANG P, HE S, et al. A review on the utilization of natural graphite and graphite−based materials[J]. Sci Sin Tech, 2017, 47(1): 13−31. doi: 10.1360/N092015-00380

    CrossRef Google Scholar

    [2] 沈万慈. 石墨产业的现代化与天然石墨的精细加工[J]. 中国非金属矿工业导刊, 2005(6): 3−7. doi: 10.3969/j.issn.1007-9386.2005.06.001

    CrossRef Google Scholar

    SHEN W C. Modernization of the graphite industry and fine processing of natural graphite[J]. China Non−Metallic Minerals Industry, 2005(6): 3−7. doi: 10.3969/j.issn.1007-9386.2005.06.001

    CrossRef Google Scholar

    [3] 尹丽文. 世界石墨资源开发利用现状[J]. 国土资源情报, 2011(6): 29−32+23.

    Google Scholar

    YIN L W. World graphite resources development and utilization status[J]. Land and Resources Information, 2011(6): 29−32+23.

    Google Scholar

    [4] 崔源声, 李辉, 徐德龙. 世界天然石墨生产、消费与国际贸易[J]. 中国非金属矿工业导刊, 2012(4): 48−51. doi: 10.3969/j.issn.1007-9386.2012.04.017

    CrossRef Google Scholar

    CUI Y S, LI H, XU D L. Production, consumption and global trade of natural graphite[J]. China Non−Metallic Minerals Industry, 2012(4): 48−51. doi: 10.3969/j.issn.1007-9386.2012.04.017

    CrossRef Google Scholar

    [5] 闫广实. 石墨产业发展现状及对策研究[J]. 学理论, 2013(24): 78−79. doi: 10.3969/j.issn.1002-2589.2013.24.037

    CrossRef Google Scholar

    YAN G S. Research on the current situation of graphite industry development and countermeasures[J]. Theory Research, 2013(24): 78−79. doi: 10.3969/j.issn.1002-2589.2013.24.037

    CrossRef Google Scholar

    [6] 康飞宇. 天然石墨的改性与应用[M]. 北京: 清华大学出版社, 2022.

    Google Scholar

    KANG F Y. Modification and application for natural graphite[M]. Beijing: Tsinghua University Press, 2022.

    Google Scholar

    [7] 马芳源. 石墨矿纳米气泡高效浮选及其机理研究[D]. 徐州: 中国矿业大学, 2021.

    Google Scholar

    MA F Y. Study on high−efficiency nanobubble flotation of graphite ore and its mechanisms[D]. Xuzhou: China University of Mining and Technology, 2021.

    Google Scholar

    [8] LI A, MILLER A. China's amorphous graphite rebounds in Q2[J]. Industrial Minerals, 2013, 550: 17.

    Google Scholar

    [9] 李建新, 黄启忠, 曹晖. 天然微晶石墨加工及应用技术现状[J]. 炭素技术, 2021, 40(1): 9−14+8.

    Google Scholar

    LI J X, HUANG Q Z, CAO H. Processing and application situation of amorphous graphite[J]. Carbon Techniques, 2021, 40(1): 9−14+8.

    Google Scholar

    [10] ROBERTS J. "For microcrystalline or amorphous graphite, supply security is a big concern"[J]. Industrial Minerals, 2012, 534: 1.

    Google Scholar

    [11] 吴柏君, 张国范, 欧乐明, 等. 隐晶质石墨浮选的试验研究[J]. 非金属矿, 2015, 38(1): 63−65. doi: 10.3969/j.issn.1000-8098.2015.01.019

    CrossRef Google Scholar

    WU B J, ZHANG G F, OU L M, et al. Experimental research on flotation of microcrystalline graphite[J]. Non−Metallic Mines, 2015, 38(1): 63−65. doi: 10.3969/j.issn.1000-8098.2015.01.019

    CrossRef Google Scholar

    [12] 周开洪, 于伟, 丁行标. 隐晶质石墨浮选初步研究[J]. 矿业研究与开发, 2012, 32(4): 58−59+80.

    Google Scholar

    ZHOU K H, YU W, DING X B. Preliminary study on the flotation of aphanitic graphite[J]. Mining Research and Development, 2012, 32(4): 58−59+80.

    Google Scholar

    [13] KWIECIŃSKA B, PETERSEN H I. Graphite, semi−graphite, natural coke, and natural char classification—ICCP system[J]. International Journal of Coal Geology, 2004, 57(2): 99−116. doi: 10.1016/j.coal.2003.09.003

    CrossRef Google Scholar

    [14] 王宁, 申克, 郑永平, 等. 微晶石墨制备各向同性石墨的研究[J]. 中国非金属矿工业导刊, 2011(2): 11−13+27. doi: 10.3969/j.issn.1007-9386.2011.02.004

    CrossRef Google Scholar

    WANG N, SHEN K, ZHENG Y P, et al. Study on preparation of isotropic graphite with natural amorphous graphite[J]. China Non−Metallic Minerals Industry, 2011(2): 11−13+27. doi: 10.3969/j.issn.1007-9386.2011.02.004

    CrossRef Google Scholar

    [15] ARNOLD F, NYéKI J, SAUNDERS J. Superconducting sweet−spot in microcrystalline graphite revealed by point−contact spectroscopy[J]. JETP Letters, 2018, 107(9): 577−578.

    Google Scholar

    [16] 左力艳, 张万益, 李状. 全球石墨资源产业现状分析与我国石墨行业发展建议[J]. 矿产保护与利用, 2019, 39(6): 32−38.

    Google Scholar

    ZUO L Y, ZHANG W Y, LI Z. Current situation analysis of the global graphite resources industry and suggestions for China's graphite industry development[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 32−38.

    Google Scholar

    [17] 李超, 王登红, 赵鸿, 等. 中国石墨矿床成矿规律概要[J]. 矿床地质, 2015, 34(6): 1223−1236.

    Google Scholar

    LI C, WANG D H, ZHAO H, et al. Minerogenetic regularity of graphite deposits in China[J]. Mineral Deposits, 2015, 34(6): 1223−1236.

    Google Scholar

    [18] 唐维, 匡加才, 谢炜, 等. 隐晶质石墨纯化研究进展[J]. 化学工程师, 2012, 26(4): 30−33. doi: 10.3969/j.issn.1002-1124.2012.04.010

    CrossRef Google Scholar

    TANG W, KUANG J C, XIE W, et al. Development of the methods of aphanitic graphite purification[J]. Chemical Engineer, 2012, 26(4): 30−33. doi: 10.3969/j.issn.1002-1124.2012.04.010

    CrossRef Google Scholar

    [19] 李顺利. 微晶石墨提纯工艺研究[D]. 长沙: 湖南大学, 2018.

    Google Scholar

    LI S L. The purification process research of microcrystalline graphite[D]. Changsha: Hu’nan University, 2018.

    Google Scholar

    [20] 宋昱晗. 微细鳞片石墨和隐晶质石墨选矿工艺特性差异研究[D]. 武汉: 武汉理工大学, 2014.

    Google Scholar

    SONG Y H. Study on the difference of beneficiation process characteristic between fine flake graphite and aphanitic graphite[D]. Wuhan: Wuhan University of Technology, 2014.

    Google Scholar

    [21] ZAGHIB K, SONG X, GUERFI A, et al. Purification process of natural graphite as anode for Li−ion batteries: chemical versus thermal[J]. Journal of Power Sources, 2003, 119/120/121: 8−15. doi: 10.1016/S0378-7753(03)00116-2

    CrossRef Google Scholar

    [22] 黄锋, 苏振平, 王三胜. 石墨提纯与石墨基碳材料改性方法研究进展[J/OL]. 矿产综合利用, 1-21[2024-01-10]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231109.1623.012.html.

    Google Scholar

    HUANG F, SU Z P, WANG S S. Advances in graphite purification and graphite−based carbon material modification methods[J]. Multipurpose Utilization of Mineral Resources: 1−21[2024-01-10]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231109.1623.012.html.

    Google Scholar

    [23] 罗立群, 谭旭升, 田金星. 石墨提纯工艺研究进展[J]. 化工进展, 2014, 33(8): 2110−2116. doi: 10.3969/j.issn.1000-6613.2014.08.028

    CrossRef Google Scholar

    LUO L Q, TAN X S, TIAN J X. Research progress of graphite purification[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2110−2116. doi: 10.3969/j.issn.1000-6613.2014.08.028

    CrossRef Google Scholar

    [24] 史淇森, 燕溪溪, 乔永民, 等. 微晶石墨提纯工艺研究进展[J]. 当代化工研究, 2023(14): 16−18.

    Google Scholar

    SHI Q S, YAN X X, QIAO Y M, et al. Research progress of microcrystalline graphite purification process[J]. Modern Chemical Research, 2023(14): 16−18.

    Google Scholar

    [25] 张琳, 方建军, 赵敏捷, 等. 隐晶质石墨提纯研究进展[J]. 化工进展, 2017, 36(1): 261−267.

    Google Scholar

    ZHANG L, FANG J J, ZHAO M J, et al. Development of aphanitic graphite purification[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 261−267.

    Google Scholar

    [26] CHEHREH CHELGANI S, RUDOLPH M, KRATZSCH R, et al. A review of graphite beneficiation techniques[J]. Mineral Processing and Extractive Metallurgy Review, 2015, 37(1): 58−68.

    Google Scholar

    [27] WAKAMATSU T, NUMATA Y. Flotation of graphite[J]. Minerals Engineering, 1991, 4(7): 975−982.

    Google Scholar

    [28] 夏云凯, 任子敏, 陈鸿仙, 等. 隐晶质石墨浮选新工艺研究及其工业应用实践[J]. 非金属矿, 1996(3): 26−28.

    Google Scholar

    XIA Y K, REN Z M, CHEN H X, et al. Research on new flotation process of cryptocrystalline graphite and its industrial application practice[J]. Non−Metallic Mines, 1996(3): 26−28.

    Google Scholar

    [29] 陈军, 闵凡飞, 王辉. 微细粒矿物疏水聚团的研究现状及进展[J]. 矿物学报, 2014, 34(2): 181−188.

    Google Scholar

    CHEN J, MIN F F, WANG H. A review: research status and progress on hydrophobic aggregation of the fine particles mineral[J]. Acta Mineralogica Sinica, 2014, 34(2): 181−188.

    Google Scholar

    [30] WENG X, LI H, SONG S, et al. Reducing the entrainment of gangue fines in low grade microcrystalline graphite ore flotation using multi−stage grinding−flotation process[J]. Minerals, 2017, 7(3): 38−49.

    Google Scholar

    [31] 张团团, 彭耀丽, 谢广元, 等. 隐晶质石墨旋流微泡浮选柱与浮选机试验研究[J]. 非金属矿, 2017, 40(1): 7−9+12. doi: 10.3969/j.issn.1000-8098.2017.01.003

    CrossRef Google Scholar

    ZHANG T T, PENG Y L, XIE G Y, et al. Experiment of flotation of microcrystalline graphite by cyclonic micro−bubble flotation column and flotator[J]. Non−Metallic Mines, 2017, 40(1): 7−9+12. doi: 10.3969/j.issn.1000-8098.2017.01.003

    CrossRef Google Scholar

    [32] WANG X X , ZHANG J, MUHAMMAD B, et al. Effects of sec−octanol and terpineol on froth properties and flotation selectivity index for microcrystalline graphite[J]. Minerals, 2023, 13(9): 1231.

    Google Scholar

    [33] 丁行标, 于伟, 周开洪. 某隐晶质石墨浮选对比试验研究[J]. 矿山机械, 2011, 39(11): 82−85.

    Google Scholar

    DING X B, YU W, ZHOU K H. Study on contrastive experiment for flotation of aphanitic graphite[J]. Mining & Processing Equipment, 2011, 39(11): 82−85.

    Google Scholar

    [34] 卢文光, 王祖讷. 一种选别隐晶质石墨的新方法[J]. 非金属矿, 1994(1): 17−18.

    Google Scholar

    LU W G, WANG Z N. A new method for selecting cryptocrystalline graphite[J]. Non−Metallic Mines, 1994(1): 17−18.

    Google Scholar

    [35] CHAO N, ZHANG Q S, JIN M G, et al. Effect of high−speed shear flocculation on the flotation kinetics of ultrafine microcrystalline graphite[J]. Powder Technology, 2021, 396: 345−353.

    Google Scholar

    [36] LIANG L, ZHANG T, PENG Y, et al. Inhibiting heterocoagulation between microcrystalline graphite and quartz by pH modification and sodium hexametaphosphate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 149−154.

    Google Scholar

    [37] QIU Y, MAO Z, SUN K, et al. Cost−efficient clean flotation of amorphous graphite using water−in−oil kerosene emulsion as a novel collector[J]. Advanced Powder Technology, 2022, 33(11): 103770.

    Google Scholar

    [38] 王承二, 彭伟军, 胡宇, 等. 乳化煤油粒度对隐晶质石墨浮选效果的影响[J]. 非金属矿, 2015, 38(5): 48−49+53. doi: 10.3969/j.issn.1000-8098.2015.05.015

    CrossRef Google Scholar

    WANG C E, PENG W J, HU Y, et al. Effect of the granularity of the emulsified kerosene on the flotation of amorphous graphite[J]. Non−Metallic Mines, 2015, 38(5): 48−49+53. doi: 10.3969/j.issn.1000-8098.2015.05.015

    CrossRef Google Scholar

    [39] PENG W, WANG C, HU Y, et al. Effect of droplet size of the emulsified kerosene on the floatation of amorphous graphite[J]. Journal of Dispersion Science and Technology, 2016, 38(6): 889−894.

    Google Scholar

    [40] GAO J, BU X, ZHOU S, et al. Graphite flotation by β−cyclodextrin/kerosene pickering emulsion as a novel collector[J]. Minerals Engineering, 2022, 178: 107412.

    Google Scholar

    [41] 卜祥宁, 高继轩, 倪超, 等. β−环糊精/煤油皮克林乳液改善隐晶质石墨浮选效果的机理[J]. 煤炭学报, 2023, 48(S1): 288−295.

    Google Scholar

    BU X N, GAO J X, NI C, et al. Mechanism of β−cyclodextrin/kerosene pickering lotion for improving the flotation effect of aphanitic graphite[J]. Journal of China Coal Society, 2023, 48(S1): 288−295.

    Google Scholar

    [42] WANG X, BU X, ALHESHIBRI M, et al. Effect of scrubbing medium’s particle size distribution and scrubbing time on scrubbing flotation performance and entrainment of microcrystalline graphite[J]. International Journal of Coal Preparation and Utilization, 2021, 42(10): 3032−3053.

    Google Scholar

    [43] WANG X, BU X, NI C, et al. Effect of scrubbing medium’s particle size on scrubbing flotation performance and mineralogical characteristics of microcrystalline graphite[J]. Minerals Engineering, 2021, 163: 106766.

    Google Scholar

    [44] 梁刚, 赵国刚, 王振廷. 感应加热制取高纯石墨研究[J]. 炭素技术, 2013, 32(4): 44−46.

    Google Scholar

    LIANG G, ZHAO G G, WANG Z T. The investigation of high purity graphite by induction heating[J]. Carbon Techniques, 2013, 32(4): 44−46.

    Google Scholar

    [45] WANG H, FENG Q, LIU K, et al. A novel technique for microcrystalline graphite beneficiation based on alkali−acid leaching process[J]. Separation Science and Technology, 2017, 53(6): 982−989.

    Google Scholar

    [46] 陈浩, 冯雅丽, 马英, 等. 微晶石墨高温焙烧制备高纯石墨研究[J]. 炭素技术, 2017, 36(6): 60−64.

    Google Scholar

    CHEN H, FENG Y L, MA Y, et al. Research on preparation of high purity graphite from amorphous graphite by high temperature[J]. Carbon Techniques, 2017, 36(6): 60−64.

    Google Scholar

    [47] WANG H, FENG Q, TANG X, et al. Preparation of high−purity graphite from a fine microcrystalline graphite concentrate: Effect of alkali roasting pre−treatment and acid leaching process[J]. Separation Science and Technology, 2016, 51(14): 2465−2472. doi: 10.1080/01496395.2016.1206933

    CrossRef Google Scholar

    [48] CHEN Q, LI Y. Study on purification and modification processing technology of microcrystalline graphite[J]. IOP Conference Series: Earth and Environmental Science, 2021, 859: 012040.

    Google Scholar

    [49] 姜芳, 宾晓蓓, 涂秉峰, 等. 盐酸−氢氟酸法纯化制备微晶石墨研究[J]. 炭素技术, 2014, 33(5): 23−25.

    Google Scholar

    JIANG F, BIN X B, TU B F, et al. Hydrochloric acid−hydrofluoric acid purification method for the preparation of microcrystalline graphite[J]. Carbon Techniques, 2014, 33(5): 23−25.

    Google Scholar

    [50] 洪泉, 何月德, 刘洪波, 等. 纯化处理对天然微晶石墨电化学性能影响的研究[J]. 非金属矿, 2010, 33(3): 45−48+51. doi: 10.3969/j.issn.1000-8098.2010.03.015

    CrossRef Google Scholar

    HONG Q, HE Y D, LIU H B, et al. Investigations on electrochemical performances of purified natural microcrystalline graphite[J]. Non−Metallic Mines, 2010, 33(3): 45−48+51. doi: 10.3969/j.issn.1000-8098.2010.03.015

    CrossRef Google Scholar

    [51] 段佳琪, 孙红娟, 彭同江. 超声−混酸法提纯微晶石墨[J]. 非金属矿, 2017, 40(1): 58−61. doi: 10.3969/j.issn.1000-8098.2017.01.018

    CrossRef Google Scholar

    DUAN J Q, SUN H J, PENG T J. Purification of microcrystalline graphite by ultrasonic treatment and mixed acid[J]. Non−Metallic Mines, 2017, 40(1): 58−61. doi: 10.3969/j.issn.1000-8098.2017.01.018

    CrossRef Google Scholar

    [52] 匡加才, 徐华, 谢炜, 等. 氟化铵−盐酸法提纯隐晶质石墨工艺研究[J]. 材料导报, 2013, 27(10): 9−12. doi: 10.3969/j.issn.1005-023X.2013.10.003

    CrossRef Google Scholar

    KUANG J C, XU H, XIE W, et al. Investigation of purification technology for aphanitic graphite by ammonium fluoride and hydrochloric acid[J]. Materials Reports, 2013, 27(10): 9−12. doi: 10.3969/j.issn.1005-023X.2013.10.003

    CrossRef Google Scholar

    [53] XIE W, WANG Z, KUANG J, et al. Fixed carbon content and reaction mechanism of natural microcrystalline graphite purified by hydrochloric acid and sodium fluoride[J]. International Journal of Mineral Processing, 2016, 155: 45−54. doi: 10.1016/j.minpro.2016.08.002

    CrossRef Google Scholar

    [54] 葛鹏, 王化军, 解琳, 等. 石墨提纯方法进展[J]. 金属矿山, 2010(10): 38−43.

    Google Scholar

    GE P, WANG H J, XIE L, et al. Progress of the methods of graphite purification[J]. Metal Mine, 2010(10): 38−43.

    Google Scholar

    [55] 夏云凯. 氯化焙烧法提纯天然鳞片石墨工艺研究[J]. 非金属矿, 1993(5): 21−24.

    Google Scholar

    XIA Y K. Study on the purification process of natural flake graphite by chlorination roasting method[J]. Non−Metallic Mines, 1993(5): 21−24.

    Google Scholar

    [56] 童曦, 伍江涛, 范德波. 隐晶质石墨的性能特点及其应用研究进展[J]. 中国非金属矿工业导刊, 2015(5): 1−4. doi: 10.3969/j.issn.1007-9386.2015.05.001

    CrossRef Google Scholar

    TONG X, WU J T, FAN D B. Characteristics and application research progress of cryptocrystalline graphite[J]. China Non−Metallic Minerals Industry, 2015(5): 1−4. doi: 10.3969/j.issn.1007-9386.2015.05.001

    CrossRef Google Scholar

    [57] 刘磊, 孙华星, 郭理想, 等. 坦桑尼亚某晶质石墨大鳞片保护工艺研究[J]. 矿产保护与利用, 2023, 43(3): 96−104.

    Google Scholar

    LIU L, SUN H X, GUO L X, et al. Study on the protection process of a crystalline graphite macroscale in Tanzania[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 96−104.

    Google Scholar

    [58] 孙华星, 赵恒勤, 刘磊. 晶质石墨碎磨中鳞片保护的研究进展[J]. 矿产保护与利用, 2021, 41(6): 20−26.

    Google Scholar

    SUN H X, ZHAO H Q, LIU L. Advanced in the protection of crystalline graphite flake during grinding[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 20−26.

    Google Scholar

    [59] 杨森, 杨绍斌, 董伟, 等. 天然微晶石墨提纯工艺及可逆储锂性能[J]. 硅酸盐通报, 2019, 38(4): 1148−1154.

    Google Scholar

    YANG S, YANG S B, DONG W, et al. Purification process and reversible lithium storage performance of natural microcrystalline graphite[J]. Bulletin of The Chinese Ceramic Society, 2019, 38(4): 1148−1154.

    Google Scholar

    [60] WANG J, HUANG J, YAN R, et al. Graphene microsheets from natural microcrystalline graphite minerals: scalable synthesis and unusual energy storage†[J]. Journal of Materials Chemistry A, 2014, 3(6): 3144−3150.

    Google Scholar

    [61] XIAN H, PENG T, SUN H, WANG J. Preparation of graphene nanosheets from microcrystalline graphite by low−temperature exfoliated method and their supercapacitive behavior[J]. Journal of Materials Science, 2015, 50(11): 4025−4033.

    Google Scholar

    [62] LIN S F, LIU F X, CHEN G H. Effective production of nano−sized graphene via straight−forward exfoliation of microcrystalline graphite[J]. RSC Advances, 2014, 4(86): 45885−45889.

    Google Scholar

    [63] XIAN H, PENG T, SUN H, et al. Preparation, characterization and supercapacitive performance of graphene nanosheets from microcrystalline graphite[J]. Journal of Materials Science: Materials in Electronics, 2014, 26(1): 242−249.

    Google Scholar

    [64] HUANG L, LI H, WANG X, et al. High−efficiency, self−grinding exfoliation of small graphene nanosheets from microcrystalline graphite driven by microbead milling as conductive additives[J]. Science China Materials, 2022, 65(9): 2463−2471. doi: 10.1007/s40843-021-2015-8

    CrossRef Google Scholar

    [65] XIE W, ZHU X, XU S, et al. Cost−effective fabrication of graphene−like nanosheets from natural microcrystalline graphite minerals by liquid oxidation–reduction method[J]. RSC Advances, 2017, 7(51): 32008−32019.

    Google Scholar

    [66] 沈万慈, 康飞宇, 黄正宏, 等. 石墨产业的现状与发展[J]. 中国非金属矿工业导刊, 2013(2): 1−3+43. doi: 10.3969/j.issn.1007-9386.2013.02.001

    CrossRef Google Scholar

    SHEN W C, KANG F Y, HUANG Z H, et al. Current situation and development of Chinese graphite industry[J]. China Non−Metallic Minerals Industry, 2013(2): 1−3+43. doi: 10.3969/j.issn.1007-9386.2013.02.001

    CrossRef Google Scholar

    [67] 赵建民. 石墨深加工技术概况及应用[J]. 科学技术创新, 2018(20): 185−186. doi: 10.3969/j.issn.1673-1328.2018.20.115

    CrossRef Google Scholar

    ZHAO J M. Graphite deep processing technology overview and application[J]. Science and technology innovation, 2018(20): 185−186. doi: 10.3969/j.issn.1673-1328.2018.20.115

    CrossRef Google Scholar

    [68] ZOU L, KANG F, LI X, et al. Investigations on the modified natural graphite as anode materials in lithium ion battery[J]. Journal of Physics and Chemistry of Solids, 2008, 69(5/6): 1265−1271. doi: 10.1016/j.jpcs.2007.10.096

    CrossRef Google Scholar

    [69] 李宽. 天然微晶石墨的浸润性及制备各向同性石墨的研究[D]. 北京: 清华大学, 2016.

    Google Scholar

    LI K. Wettability of natural microcrystalline graphite and its application in isotropic graphite preparation[D]. Beijing: Tsinghua University, 2016.

    Google Scholar

    [70] YANG S, ZHANG S, DONG W, et al. Purification mechanism of microcrystalline graphite and lithium storage properties of purified graphite[J]. Materials Research Express, 2022, 9(2): 025505.

    Google Scholar

    [71] ENDO T, YAMADA H, SUMOMOGI T, et al. Atomic−resolution images of structural defects on microcrystalline graphite[J]. Ultramicroscopy, 1992, 42/43/44: 674−678.

    Google Scholar

    [72] LIU B, HUANG P, LIU M, et al. Utilization of impurities and carbon defects in natural microcrystalline graphite to prepare silicon−graphite composite anode for high−performance lithium−ion batteries[J]. Journal of Materials Science, 2021, 56(31): 17682−17693.

    Google Scholar

    [73] HUANG P, LIU B, ZHANG J, et al. Silicon/carbon composites based on natural microcrystalline graphite as anode for lithium−ion batteries[J]. Ionics, 2021, 27: 1957−1966.

    Google Scholar

    [74] WANG C, GAI G, YANG Y. Shape modification and size classification of microcrystalline graphite powder as anode material for lithium−ion batteries[J]. JOM, 2018, 70(8): 1392−1397.

    Google Scholar

    [75] WANG X, GAI G S, YANG Y F, et al. Preparation of natural microcrystalline graphite with high sphericity and narrow size distribution[J]. Powder Technology, 2008, 181(1): 51−56.

    Google Scholar

    [76] 何明, 盖国胜, 刘旋, 等. 制粉工艺对微晶石墨结构与电性能的影响[J]. 电池, 2002(4): 197−200. doi: 10.3969/j.issn.1001-1579.2002.04.003

    CrossRef Google Scholar

    HE M, GAI G S, LIU X, et al. Effect of milling means on structure and electrochemical properties of natural graphite[J]. Battery Bimonthly, 2002(4): 197−200. doi: 10.3969/j.issn.1001-1579.2002.04.003

    CrossRef Google Scholar

    [77] 肖海河, 刘洪波, 何月德, 等. 沥青炭包覆微晶石墨用作锂离子电池负极材料的研究[J]. 功能材料, 2013, 44(19): 2759−2763. doi: 10.3969/j.issn.1001-9731.2013.19.004

    CrossRef Google Scholar

    XIAO H H, LIU H B, HE Y D, et al. Study on coal−tar pitch carbon coated microcrystalline graphite used as lithium ion batteries anode[J]. Journal of Functional Materials, 2013, 44(19): 2759−2763. doi: 10.3969/j.issn.1001-9731.2013.19.004

    CrossRef Google Scholar

    [78] 何明, 刘旋, 陈湘彪, 等. 树脂碳包覆微晶石墨的制备及其电化学性能[J]. 电池, 2003(5): 281−284. doi: 10.3969/j.issn.1001-1579.2003.05.005

    CrossRef Google Scholar

    HE M, LIU X, CHEN X B, et al. Preparation and electrochemical properties of resin carbon−coated graphite[J]. Battery Bimonthly, 2003(5): 281−284. doi: 10.3969/j.issn.1001-1579.2003.05.005

    CrossRef Google Scholar

    [79] 何月德, 刘洪波, 洪泉, 等. 酚醛树脂炭包覆对天然微晶石墨电化学性能的影响[J]. 功能材料, 2013, 44(16): 2397−2400+2405. doi: 10.3969/j.issn.1001-9731.2013.16.024

    CrossRef Google Scholar

    HE Y D, LIU H B, HONG Q, et al. Investigation on pyrolitic carbon−coated microcrystalline graphite as anode material for Li−ion batteries[J]. Journal of Functional Materials, 2013, 44(16): 2397−2400+2405. doi: 10.3969/j.issn.1001-9731.2013.16.024

    CrossRef Google Scholar

    [80] 何月德, 刘洪波, 石磊, 等. 改性球形微晶石墨用作锂离子电池负极材料的研究[J]. 湖南大学学报(自然科学版), 2009, 36(11): 44−46+61.

    Google Scholar

    HE Y D, LIU H B, SHI L, et al. Study on modified spherical microcrystalline graphite as anode material for Li−ion batteries[J]. Journal of Hunan Universuty (Natural Sciences), 2009, 36(11): 44−46+61.

    Google Scholar

    [81] MA Y, ZHENG Y, XU M, et al. One−step binding and wrapping fragmented natural microcrystalline graphite via phenolic resin into secondary particles for high−performance lithium−ion battery anode[J]. JOM, 2023, 75(12): 5321−5330.

    Google Scholar

    [82] SUN Y, HAN F, ZHANG C, et al. FeCl3 intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium−ion batteries[J]. Energy Technology, 2019, 7(4).

    Google Scholar

    [83] 黄四信, 何永康, 马历乔. 等静压石墨的生产工艺、主要用途和国内市场分析[J]. 炭素技术, 2010, 29(5): 32−37. doi: 10.3969/j.issn.1001-3741.2010.05.007

    CrossRef Google Scholar

    HUANG S X, HE Y K, MA L Q. Production, applications and domestic market analysis for isostatically pressed graphites[J]. Carbon Techniques, 2010, 29(5): 32−37. doi: 10.3969/j.issn.1001-3741.2010.05.007

    CrossRef Google Scholar

    [84] 王宁. 用天然微晶石墨制备各向同性石墨的研究[D]. 北京: 清华大学, 2011.

    Google Scholar

    WANG N. Study on preparation of isotropic graphite with nature amorphous graphite[D]. Beijing: Tsinghua University, 2011.

    Google Scholar

    [85] SHEN K, HUANG Z H, HU K, et al. Advantages of natural microcrystalline graphite filler over petroleum coke in isotropic graphite preparation[J]. Carbon, 2015, 90: 197−206. doi: 10.1016/j.carbon.2015.03.068

    CrossRef Google Scholar

    [86] SHEN K, CAO X, HUANG Z H, et al. Microstructure and thermal expansion behavior of natural microcrystalline graphite[J]. Carbon, 2021, 177: 90−96.

    Google Scholar

    [87] HE Z, SONG J, WANG Z, et al. Comparison of ultrafine−grain isotropic graphite prepared from microcrystalline graphite and pitch coke[J]. Fuel, 2021, 290: 120055.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(2)

Article Metrics

Article views(164) PDF downloads(491) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint