Citation: | OUYANG Jing, PENG Yonghui, YUAN Bo, WANG Gang, ZHANG Qi, ZHOU Wentao. Preparation Technology and Affecting Factors for Properties of Quartz Ceramics[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2): 124-134. doi: 10.13779/j.cnki.issn1001-0076.2024.08.001 |
Quartz ceramics possess excellent properties such as low thermal expansion coefficient, good thermal stability, and low dielectric constant, making them key products in many structural and functional material fields. Based on the performance advantages and preparation process of quartz ceramic materials, this paper analyzes in detail the preparation technology of high−purity quartz powder and the key technologies in the preparation process of quartz ceramics. It summarizes the key factors and control principles for improving the performance of quartz ceramics and analyzes the application status of quartz ceramics in national strategic demand fields such as aerospace, float glass, electronics, metallurgy, and solar polysilicon. Aiming at the current status, development prospects, and existing problems of quartz ceramics application, corresponding research and design and development methods are proposed, and the future development direction and solutions of quartz ceramics are prospected.
[1] | 荆富, 王磊. 石英陶瓷的研究及应用进展[J]. 中国非金属矿工业导刊, 2013(3): 16−20. doi: 10.3969/j.issn.1007-9386.2013.03.006 JING F, WANG L. Progress in research and application of quartz ceramics[J]. China Non−Metallic Mineral Industry Guide, 2013(3): 16−20. doi: 10.3969/j.issn.1007-9386.2013.03.006 |
[2] | J. S. LYONS, T. L. STARR.Strength and toughness of slip−cast fused−silica composites[J]. Journal of the American Ceramic Society, 2010, 77(6): 1673−1675. |
[3] | 贾德龙, 张万益, 陈丛林, 等. 高纯石英全球资源现状与我国发展建议[J]. 矿产保护与利用, 2019, 39(5): 111−117. JIA D L, ZHANG W Y, CHEN C L, et al. Global resource status of high−purity quartz and development suggestions in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 111−117. |
[4] | CHOI J H, LEE W G, SHIM T H, et al. Fumed silica−based ultra−high−purity synthetic quartz powder via sol–gel process for advanced semiconductor process beyond design rule of 3 nm[J]. Nanomaterials, 2023, 13(3): 390. doi: 10.3390/nano13030390 |
[5] | VATALIS K I, CHARALAMPIDES G, PLATIAS S, et al. Market developments and industrial innovative applications of high purity quartz refines[J]. Procedia Economics and Finance, 2014, 14: 624−633. doi: 10.1016/S2212-5671(14)00751-5 |
[6] | PAN X, LI S, LI Y, et al. Resource, characteristic, purification and application of quartz: a review[J]. Minerals Engineering, 2022, 183: 107600. doi: 10.1016/j.mineng.2022.107600 |
[7] | EL SHERIF M. Silica added value & application in solar cells manufacturing[J]. Journal of the Egyptian Society of Engineers, 2017, 56(1): 37−30. |
[8] | 徐雯雯. 高纯石英粉制备工艺研究[D]. 青岛: 中国海洋大学, 2013. XU W W. Study on preparation technology of high purity quartz powder [D]. Qingdao: Ocean University of China, 2013. |
[9] | ZHANG R, TANG C, NI W, et al. Research status and challenges of high−purity quartz processing technology from a mineralogical perspective in China[J]. Minerals, 2023, 13(12): 1505. doi: 10.3390/min13121505 |
[10] | ZHONG T, YU W, SHEN C, et al. Research on preparation and characterisation of high−purity silica sands by purification of quartz vein ore from dabie mountain[J]. Silicon, 2021: 1−7. |
[11] | ZHANG H, GUO S, WU J, et al. Effect of quartz crystal structure transformations on the removal of iron impurities[J]. Hydrometallurgy, 2021, 204: 105715. doi: 10.1016/j.hydromet.2021.105715 |
[12] | LI Y, LI S, PAN X, et al. Eco−friendly strategy for preparation of high−purity silica from high−silica IOTs using S−HGMS coupling with ultrasound−assisted fluorine−free acid leaching technology[J]. Journal of Environmental Management, 2023, 339: 117932. doi: 10.1016/j.jenvman.2023.117932 |
[13] | 袁向东, 吴翠珍, 张联盟. 精细熔融石英陶瓷技术研究及开发应用的新进展[J]. 硅酸盐通报, 2006, 25(6): 154−158. doi: 10.3969/j.issn.1001-1625.2006.06.034 YUAN X D, WU C Z, ZHANG L M. New progress in research, development and application of fine fused quartz ceramics[J]. Bulletin of Ceramics, 2006, 25(6): 154−158. doi: 10.3969/j.issn.1001-1625.2006.06.034 |
[14] | 刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺研究[J]. 矿产综合利用, 2020(4): 116−120. doi: 10.3969/j.issn.1000-6532.2020.04.019 LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high purity quartz from a quartz sand mine[J]. Comprehensive Utilization of Mineral Resources, 2020(4): 116−120. doi: 10.3969/j.issn.1000-6532.2020.04.019 |
[15] | YANG C, LI S, BAI J, et al. Advanced purification of industrial quartz using calcination pretreatment combined with ultrasound−assisted leaching [J]. Acta Geodynamica et Geomaterialia, 2018: 187−195. |
[16] | 张保川, 薛屺, 张进, 等. 以四氯化硅水热法合成高纯微米级石英晶体[J]. 无机盐工业, 2013, 45(2): 33-35. doi: 10.3969/j.issn.1006-4990.2013.02.011 ZHANG B C, XUE Q, ZHANG J, et al. Synthesis of high purity micron quartz crystals by hydrothermal method of silicon tetrachloride[J]. Inorganic Chemicals Industry, 2013, 45(2): 33-35. doi: 10.3969/j.issn.1006-4990.2013.02.011 |
[17] | CHEN Z, LIAN Y Y, LIU X, et al. Recent research and development of thick CVD tungsten coatings for fusion application[J]. Tungsten, 2020, 2: 83−93. doi: 10.1007/s42864-020-00041-x |
[18] | LI H, HU K, LIU Y, et al. Improved mechanical properties of silica ceramic cores prepared by 3D printing and sintering processes[J]. Scripta Materialia, 2021, 194: 113665. doi: 10.1016/j.scriptamat.2020.113665 |
[19] | A. TSETSEKOU, C. AGRAFIOTIS, A. MILIAS. Optimization of the rheological properties of alumina slurries for ceramic processing applications Part I: Slip-casting[J]. Journal of the European Ceramic Society, 2001, 21(3): 363-373. |
[20] | PEREZ J M, RINCON J M, ROMERO M. Effect of moulding pressure on microstructure and technological properties of porcelain stoneware[J]. Ceramics International, 2012, 28(1): 317−325. |
[21] | CHAUHAN A S, ANIRUDH B, SATYANARAYANA A, et al. FEA optimization of injection parameters in ceramic core development for investment casting of a gas turbine blade[J]. Materials Today: Proceedings, 2020, 26: 2190−2199. doi: 10.1016/j.matpr.2020.02.477 |
[22] | OMATETE O O, JAMMY M A, STEHLOW R A. Gelcastinga new ceramic forming process[J]. American Ceramic Society Bulletin, 1991, 10(70): 1641−1649. |
[23] | YOUNG A C, OMATETE O O, JANNEY M A, et al. Gelcasting of alumina[J]. Journal of the American Ceramic Society, 2010, 74(3): 612−618. |
[24] | CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661−87. doi: 10.1016/j.jeurceramsoc.2018.11.013 |
[25] | 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2019, 48(9): 1−12. doi: 10.11868/j.issn.1001-4381.2019.000122 LIU Y, CHEN Z W. Research progress of ceramic photocuring 3D printing technology[J]. Journal of Materials Engineering, 2019, 48(9): 1−12. doi: 10.11868/j.issn.1001-4381.2019.000122 |
[26] | 顾玥, 王功, 段文艳, 等. 陶瓷光固化成型技术的应用与展望[J]. 硅酸盐学报, 2019, 49(5): 867−877. GU Y, WANG G, DUAN W Y, et al. Application and prospect of photocuring technology for ceramics[J]. Journal of the Chinese Ceramics, 2019, 49(5): 867−877. |
[27] | LI J P, HABIBOVIC P, VAN DEN DOEL M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 2007, 28(18): 2810−2820. doi: 10.1016/j.biomaterials.2007.02.020 |
[28] | 陈典典, 鲍明东, 李鑫, 等. 3D打印氧化硅基陶瓷型芯的各向异性研究[J]. 中国陶瓷, 2019, 56(5): 33−39. CHEN D D, BAO M D, LI X, et al. Anisotropy of 3D printed silica based ceramic core[J]. Chinese Ceramics, 2019, 56(5): 33−39. |
[29] | WANG X, ZHOU Y, ZHOU L, et al. Microstructure and properties evolution of silicon−based ceramic cores fabricated by 3D printing with stair−stepping effect control[J]. Journal of the European Ceramic Society, 2021, 41(8): 4650−4657. doi: 10.1016/j.jeurceramsoc.2021.03.036 |
[30] | XIA L, QIANG L, YAG. Ceramic processed by slip casting via aqueous slurries[J]. Ceramics International, 2008, 34(2): 397−401. doi: 10.1016/j.ceramint.2006.10.018 |
[31] | 侯清麟, 文定, 侯熠徽, 等. 固相含量对熔融石英陶瓷注凝成型的影响[J]. 广州化工, 2016, 44(22): 21−23. doi: 10.3969/j.issn.1001-9677.2016.22.008 HOU Q L, WEN D, HOU Y H, et al. Effect of solid phase content on injection formation of fused quartz ceramics[J]. Guangzhou Chemical Industry, 2016, 44(22): 21−23. doi: 10.3969/j.issn.1001-9677.2016.22.008 |
[32] | 侯清麟, 王迎霞, 田靓, 等. 熔融石英陶瓷的注凝成型工艺及影响其性能的因素[J]. 广州化工, 2018, 46(2): 1−2+18. doi: 10.3969/j.issn.1001-9677.2018.02.002 HOU Q L, WANG Y X, TIAN L, et al. Injection moulding process and factors affecting properties of fused quartz ceramics[J]. Guangzhou Chemical Industry, 2018, 46(2): 1−2+18. doi: 10.3969/j.issn.1001-9677.2018.02.002 |
[33] | WAN W, HUANG C E, YANG J, et al. Effect of sintering temperature on the properties of fused silica ceramics prepared by gelcasting[J]. Journal of Electronic Materials, 2014, 43(7): 2566−2572. doi: 10.1007/s11664-014-3112-7 |
[34] | WAN W, YANG J, JIN Z, et al. Effect of solid loading on gelcasting of silica ceramics using DMAA[J]. Ceramics International, 2014, 40(1): 1735−1740. doi: 10.1016/j.ceramint.2013.07.071 |
[35] | WAN W, YANG J, ZENG J, et al. Gelcasting of fused silica glass using a low−toxicity monomer DMAA[J]. Journal of Non−Crystalline Solids, 2013, 379: 229−234. doi: 10.1016/j.jnoncrysol.2013.08.017 |
[36] | KANDI K K, PAL S K, RAO C S P. Effect of dispersant on the rheological properties of gelcast fused silica ceramics[C]. IOP Conference Series: Materials Science and Engineering, 2016, 149. |
[37] | 陈越军, 卜景龙, 崔燚, 等. 添加纳米Y2O3或纳米ZnO对熔融石英陶瓷脱玻性能的影响[J]. 耐火材料, 2019, 53(1): 61−64. doi: 10.3969/j.issn.1001-1935.2019.01.015 CHEN Y J, BU J L, CUI Y, et al. Effect of addition of nano−Y2O3 or nano−ZnO on deglassing properties of fused quartz ceramics[J]. Journal of Refractories, 2019, 53(1): 61−64. doi: 10.3969/j.issn.1001-1935.2019.01.015 |
[38] | 王金波. 熔融石英陶瓷的等静压成型及烧结工艺研究[D]. 武汉: 华中科技大学, 2009. WANG J B. Research on isostatic pressing and sintering process of fused quartz ceramics[D]. Wuhan: Huazhong University of Science and Technology, 2009. |
[39] | 闫法强, 陈斐, 沈强, 等. 放电等离子烧结技术制备熔融石英陶瓷[J]. 硅酸盐通报, 2007(2): 362−365+381. doi: 10.3969/j.issn.1001-1625.2007.02.032 YAN F Q, CHEN F, SHEN Q, et al. Preparation of fused quartz ceramics by discharge plasma sintering[J]. Bulletin of Ceramics, 2007(2): 362−365+381. doi: 10.3969/j.issn.1001-1625.2007.02.032 |
[40] | LI H, HU K, LIU Y, et al. Improved mechanical properties of silica ceramic cores prepared by 3D printing and sintering processe[J]. Scripta Materialia, 2021: 113665. |
[41] | JUNIOR A D N, HOTZA D, SOLER V C, et al. Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates[J]. Journal of the European Ceramic Society, 2009, 29(6): 1039−1046. doi: 10.1016/j.jeurceramsoc.2008.07.052 |
[42] | ZAICHUK A, AMELINA A, KALISHENKO Y, et al. Aspects of development and properties of densely sintered of ultra−high−frequency radio−transparent ceramics of cordierite composition[J]. Journal of the Korean Ceramic Society, 2021, 58(4): 483−494. doi: 10.1007/s43207-021-00125-5 |
[43] | LIANG D, HUANG J, ZHANG H, et al. Influencing factors on the performance of tubular ceramic membrane supports prepared by extrusion[J]. Ceramics International, 2021, 47(8): 10464−10477. doi: 10.1016/j.ceramint.2020.12.235 |
[44] | 鄢文超. 添加剂对熔融石英陶瓷析晶和致密化的影响[D]. 武汉: 华中科技大学, 2012. YAN W C. Effect of additives on crystallization and densification of fused quartz ceramics[D]. Wuhan: Huazhong University of Science and Technology, 2012. |
[45] | JIA D C, ZHOU Y, LEI T C. Ambient and elevated temperature mechanical properties of hot−pressed fused silica matrix composite[J]. Journal of the European Ceramic Society, 2003, 23(5): 801−808. doi: 10.1016/S0955-2219(02)00156-5 |
[46] | 张磊. 氧化锆增强熔融硅陶瓷的力学和电学性能[J]. 金属功能材料, 2022, 29(3): 41−46. ZHANG L. Mechanical and electrical properties of fused silicon ceramics enhanced by zirconia[J]. Metal Functional Materials, 2022, 29(3): 41−46. |
[47] | LIANG L. Study on preparation of quartz ceramics toughened with mineralizer[J]. Integrated Ferroelectrics, 2020, 207(1): 197−207. doi: 10.1080/10584587.2020.1728679 |
[48] | XU C M, WANG S W. Roles of oxygen and hydrogen in the amorphization of cristobalite[J]. Journal of the American Ceramic Society, 2007, 90(10): 3268−3273. doi: 10.1111/j.1551-2916.2007.01897.x |
[49] | 王清涛. 高强度熔融石英陶瓷的制备研究[D]. 淄博: 山东理工大学, 2019. WANG Q T. Preparation of high strength fused quartz ceramics[D]. Zibo: Shandong University of Technology, 2019. |
[50] | 李友胜, 韩志强, 李楠. 外加剂对熔融石英陶瓷烧结性能的影响[J]. 耐火材料, 2004(5): 334−335+346. doi: 10.3969/j.issn.1001-1935.2004.05.011 LI Y S, HAN Z Q, LI N. Effect of admixtures on sintering properties of fused quartz ceramics[J]. Refractory Materials, 2004(5): 334−335+346. doi: 10.3969/j.issn.1001-1935.2004.05.011 |
[51] | 谷莹蕾, 李勇, 卜景龙, 等. 纳米级SnO2或Yb2O3对熔融石英陶瓷析晶性能的影响[J]. 人工晶体学报, 2019, 50(5): 927−932. GU Y L, LI Y, BU J L, et al. Effect of nano−sized SnO2 or Yb2O3 on crystallization performance of fused quartz ceramics[J]. Journal of Intraocular Lenses, 2019, 50(5): 927−932. |
[52] | 陈越军, 张璞, 吕东风, 等. 纳米氧化镧对熔融石英陶瓷析晶动力学的影响[J]. 中国陶瓷, 2019, 55(9): 43−48. CHEN Y J, ZHANG P, LV D F, et al. Effect of nanocrystalline lanthanum oxide on crystallization kinetics of fused quartz Ceramics[J]. China ceramics, 2019, 55(9): 43−48. |
[53] | 谷莹蕾, 卜景龙, 陈越军, 等. 纳米Nd2O3对熔融石英析晶机制的影响[J]. 耐火材料, 2014, 48(4): 249−253. doi: 10.3969/j.issn.1001-1935.2014.04.003 GU Y L, BU J L, CHEN Y J, et al. Effect of nano Nd2O3 on crystallization mechanism of fused quartz[J]. Refractory Materials, 2014, 48(4): 249−253. doi: 10.3969/j.issn.1001-1935.2014.04.003 |
[54] | 李娜. 利用二氧化硅基空心微珠制备多孔陶瓷天线罩材料及性能研究[D]. 太原: 中北大学, 2016. LI N. Study on materials and properties of porous ceramic radome prepared by silica hollow microbeads[D]. Taiyuan: North University of China, 2016. |
[55] | YANG X, LI B, LI D, et al. Fabrication and oxidation resistance of silicon nitride fiber reinforced silica matrix wave−transparent composites[J]. Journal of Materials Science & Technology, 2019, 35(12): 2761−2766. |
[56] | 陈虹, 胡利明, 贾光耀, 等. 陶瓷天线罩材料的研究进展[J]. 硅酸盐通报, 2002(4): 40−44. doi: 10.3969/j.issn.1001-1625.2002.04.009 CHEN H, HU L M, JIA G Y, et al. Research progress of ceramic radome materials[J]. Bulletin of Ceramics, 2002(4): 40−44. doi: 10.3969/j.issn.1001-1625.2002.04.009 |
[57] | 刘学理. 石英陶瓷在浮法玻璃生产中的应用[J]. 玻璃, 2021, 48(7): 26−30. doi: 10.3969/j.issn.1003-1987.2021.07.007 LIU X L. Application of quartz ceramics in the production of float glass[J]. Glass, 2021, 48(7): 26−30. doi: 10.3969/j.issn.1003-1987.2021.07.007 |
[58] | 唐福恒, 盛利军, 赵世博. L型吊墙前端采用耐火材料砖砌挡火门是发展趋势[J]. 玻璃, 2014, 41(3): 3−8. TANG F H, SHENG L J, ZHAO S B. The use of refractory brick fire door in front of L−type hanging wall is a development trend[J]. Glass, 2014, 41(3): 3−8. |
[59] | 赵建国, 袁向东, 崔文亮, 等. 熔融石英陶瓷产品在浮法玻璃热工设备上的应用[J]. 玻璃, 2001(2): 30−33. doi: 10.3969/j.issn.1003-1987.2001.02.007 ZHAO J G, YUAN X D, CUI W L, et al. Application of fused quartz ceramic products in float glass thermal equipment[J]. Glass, 2001(2): 30−33. doi: 10.3969/j.issn.1003-1987.2001.02.007 |
[60] | 刘得利. 石英陶瓷电器绝缘材料[J]. 佛山陶瓷, 2002(11): 33. doi: 10.3969/j.issn.1006-8236.2002.11.013 LIU D L. Quartz ceramic electrical insulation materials[J]. Foshan Ceramics, 2002(11): 33. doi: 10.3969/j.issn.1006-8236.2002.11.013 |
[61] | SUZDAL'TSEV E I. Fabrication of high−density quartz ceramics: research and practical aspects. part 3. Sintering of quartz ceramics[J]. Refractories and Industrial Ceramics, 2005, 46(6): 384−390. doi: 10.1007/s11148-006-0032-y |
[62] | 戴斌煜, 王薇薇, 商景利. 低压铸造陶瓷升液管材料抗热震性研究[J]. 铸造技术, 2008, 29(12): 1677−1680. DAI B Y, WANG W W, SHANG J L. Thermal shock resistance of ceramic riser materials for low pressure casting[J]. Foundry Technology, 2008, 29(12): 1677−1680. |
[63] | 刘孝福, 娄延春, 齐笑冰, 等. 低压铸造技术在铜合金和黑色金属领域的发展和应用[J]. 铸造, 2006(6): 585−588. doi: 10.3321/j.issn:1001-4977.2006.06.016 LIU X F, LOU Y C, QI X B, et al. Development and application of low pressure casting technology in copper alloys and ferrous metals[J]. Foundry, 2006(6): 585−588. doi: 10.3321/j.issn:1001-4977.2006.06.016 |
[64] | 米国发, 赵恒涛. 低压铸造升液管的研究与应用[J]. 航天制造技术, 2007(4): 56−59. MI G F, ZHAO H T. Research and application of low pressure casting riser[J]. Aerospace Manufacturing Technology, 2007(4): 56−59. |
[65] | 张晓艳. 熔融石英坩埚的制备及其析晶行为研究[D]. 天津: 天津大学, 2014. ZHANG X Y. Study on preparation and crystallization behavior of fused quartz crucible[D]. Tianjin: Tianjin University, 2014. |
[66] | 贾建广. 多晶硅铸锭用高纯表面处理石英陶瓷坩埚[Z]. 新余:江西中材太阳能新材料有限公司, 2018−03−25. JIA J G. High purity surface treatment quartz ceramic crucible for polysilicon ingot casting [Z]. Jiangxi Province, Jiangxi Sinocai Solar New Materials Co. LTD, 2018−03−25. |
Performance and control methods of quartz slurry
SEM images of the fracture surface morphology of quartz ceramics sintered at different temperatures [40]