Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 2
Article Contents

OUYANG Jing, PENG Yonghui, YUAN Bo, WANG Gang, ZHANG Qi, ZHOU Wentao. Preparation Technology and Affecting Factors for Properties of Quartz Ceramics[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2): 124-134. doi: 10.13779/j.cnki.issn1001-0076.2024.08.001
Citation: OUYANG Jing, PENG Yonghui, YUAN Bo, WANG Gang, ZHANG Qi, ZHOU Wentao. Preparation Technology and Affecting Factors for Properties of Quartz Ceramics[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2): 124-134. doi: 10.13779/j.cnki.issn1001-0076.2024.08.001

Preparation Technology and Affecting Factors for Properties of Quartz Ceramics

More Information
  • Quartz ceramics possess excellent properties such as low thermal expansion coefficient, good thermal stability, and low dielectric constant, making them key products in many structural and functional material fields. Based on the performance advantages and preparation process of quartz ceramic materials, this paper analyzes in detail the preparation technology of high−purity quartz powder and the key technologies in the preparation process of quartz ceramics. It summarizes the key factors and control principles for improving the performance of quartz ceramics and analyzes the application status of quartz ceramics in national strategic demand fields such as aerospace, float glass, electronics, metallurgy, and solar polysilicon. Aiming at the current status, development prospects, and existing problems of quartz ceramics application, corresponding research and design and development methods are proposed, and the future development direction and solutions of quartz ceramics are prospected.

  • 加载中
  • [1] 荆富, 王磊. 石英陶瓷的研究及应用进展[J]. 中国非金属矿工业导刊, 2013(3): 16−20. doi: 10.3969/j.issn.1007-9386.2013.03.006

    CrossRef Google Scholar

    JING F, WANG L. Progress in research and application of quartz ceramics[J]. China Non−Metallic Mineral Industry Guide, 2013(3): 16−20. doi: 10.3969/j.issn.1007-9386.2013.03.006

    CrossRef Google Scholar

    [2] J. S. LYONS, T. L. STARR.Strength and toughness of slip−cast fused−silica composites[J]. Journal of the American Ceramic Society, 2010, 77(6): 1673−1675.

    Google Scholar

    [3] 贾德龙, 张万益, 陈丛林, 等. 高纯石英全球资源现状与我国发展建议[J]. 矿产保护与利用, 2019, 39(5): 111−117.

    Google Scholar

    JIA D L, ZHANG W Y, CHEN C L, et al. Global resource status of high−purity quartz and development suggestions in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 111−117.

    Google Scholar

    [4] CHOI J H, LEE W G, SHIM T H, et al. Fumed silica−based ultra−high−purity synthetic quartz powder via sol–gel process for advanced semiconductor process beyond design rule of 3 nm[J]. Nanomaterials, 2023, 13(3): 390. doi: 10.3390/nano13030390

    CrossRef Google Scholar

    [5] VATALIS K I, CHARALAMPIDES G, PLATIAS S, et al. Market developments and industrial innovative applications of high purity quartz refines[J]. Procedia Economics and Finance, 2014, 14: 624−633. doi: 10.1016/S2212-5671(14)00751-5

    CrossRef Google Scholar

    [6] PAN X, LI S, LI Y, et al. Resource, characteristic, purification and application of quartz: a review[J]. Minerals Engineering, 2022, 183: 107600. doi: 10.1016/j.mineng.2022.107600

    CrossRef Google Scholar

    [7] EL SHERIF M. Silica added value & application in solar cells manufacturing[J]. Journal of the Egyptian Society of Engineers, 2017, 56(1): 37−30.

    Google Scholar

    [8] 徐雯雯. 高纯石英粉制备工艺研究[D]. 青岛: 中国海洋大学, 2013.

    Google Scholar

    XU W W. Study on preparation technology of high purity quartz powder [D]. Qingdao: Ocean University of China, 2013.

    Google Scholar

    [9] ZHANG R, TANG C, NI W, et al. Research status and challenges of high−purity quartz processing technology from a mineralogical perspective in China[J]. Minerals, 2023, 13(12): 1505. doi: 10.3390/min13121505

    CrossRef Google Scholar

    [10] ZHONG T, YU W, SHEN C, et al. Research on preparation and characterisation of high−purity silica sands by purification of quartz vein ore from dabie mountain[J]. Silicon, 2021: 1−7.

    Google Scholar

    [11] ZHANG H, GUO S, WU J, et al. Effect of quartz crystal structure transformations on the removal of iron impurities[J]. Hydrometallurgy, 2021, 204: 105715. doi: 10.1016/j.hydromet.2021.105715

    CrossRef Google Scholar

    [12] LI Y, LI S, PAN X, et al. Eco−friendly strategy for preparation of high−purity silica from high−silica IOTs using S−HGMS coupling with ultrasound−assisted fluorine−free acid leaching technology[J]. Journal of Environmental Management, 2023, 339: 117932. doi: 10.1016/j.jenvman.2023.117932

    CrossRef Google Scholar

    [13] 袁向东, 吴翠珍, 张联盟. 精细熔融石英陶瓷技术研究及开发应用的新进展[J]. 硅酸盐通报, 2006, 25(6): 154−158. doi: 10.3969/j.issn.1001-1625.2006.06.034

    CrossRef Google Scholar

    YUAN X D, WU C Z, ZHANG L M. New progress in research, development and application of fine fused quartz ceramics[J]. Bulletin of Ceramics, 2006, 25(6): 154−158. doi: 10.3969/j.issn.1001-1625.2006.06.034

    CrossRef Google Scholar

    [14] 刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺研究[J]. 矿产综合利用, 2020(4): 116−120. doi: 10.3969/j.issn.1000-6532.2020.04.019

    CrossRef Google Scholar

    LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high purity quartz from a quartz sand mine[J]. Comprehensive Utilization of Mineral Resources, 2020(4): 116−120. doi: 10.3969/j.issn.1000-6532.2020.04.019

    CrossRef Google Scholar

    [15] YANG C, LI S, BAI J, et al. Advanced purification of industrial quartz using calcination pretreatment combined with ultrasound−assisted leaching [J]. Acta Geodynamica et Geomaterialia, 2018: 187−195.

    Google Scholar

    [16] 张保川, 薛屺, 张进, 等. 以四氯化硅水热法合成高纯微米级石英晶体[J]. 无机盐工业, 2013, 45(2): 33-35. doi: 10.3969/j.issn.1006-4990.2013.02.011

    CrossRef Google Scholar

    ZHANG B C, XUE Q, ZHANG J, et al. Synthesis of high purity micron quartz crystals by hydrothermal method of silicon tetrachloride[J]. Inorganic Chemicals Industry, 2013, 45(2): 33-35. doi: 10.3969/j.issn.1006-4990.2013.02.011

    CrossRef Google Scholar

    [17] CHEN Z, LIAN Y Y, LIU X, et al. Recent research and development of thick CVD tungsten coatings for fusion application[J]. Tungsten, 2020, 2: 83−93. doi: 10.1007/s42864-020-00041-x

    CrossRef Google Scholar

    [18] LI H, HU K, LIU Y, et al. Improved mechanical properties of silica ceramic cores prepared by 3D printing and sintering processes[J]. Scripta Materialia, 2021, 194: 113665. doi: 10.1016/j.scriptamat.2020.113665

    CrossRef Google Scholar

    [19] A. TSETSEKOU, C. AGRAFIOTIS, A. MILIAS. Optimization of the rheological properties of alumina slurries for ceramic processing applications Part I: Slip-casting[J]. Journal of the European Ceramic Society, 2001, 21(3): 363-373.

    Google Scholar

    [20] PEREZ J M, RINCON J M, ROMERO M. Effect of moulding pressure on microstructure and technological properties of porcelain stoneware[J]. Ceramics International, 2012, 28(1): 317−325.

    Google Scholar

    [21] CHAUHAN A S, ANIRUDH B, SATYANARAYANA A, et al. FEA optimization of injection parameters in ceramic core development for investment casting of a gas turbine blade[J]. Materials Today: Proceedings, 2020, 26: 2190−2199. doi: 10.1016/j.matpr.2020.02.477

    CrossRef Google Scholar

    [22] OMATETE O O, JAMMY M A, STEHLOW R A. Gelcastinga new ceramic forming process[J]. American Ceramic Society Bulletin, 1991, 10(70): 1641−1649.

    Google Scholar

    [23] YOUNG A C, OMATETE O O, JANNEY M A, et al. Gelcasting of alumina[J]. Journal of the American Ceramic Society, 2010, 74(3): 612−618.

    Google Scholar

    [24] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661−87. doi: 10.1016/j.jeurceramsoc.2018.11.013

    CrossRef Google Scholar

    [25] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2019, 48(9): 1−12. doi: 10.11868/j.issn.1001-4381.2019.000122

    CrossRef Google Scholar

    LIU Y, CHEN Z W. Research progress of ceramic photocuring 3D printing technology[J]. Journal of Materials Engineering, 2019, 48(9): 1−12. doi: 10.11868/j.issn.1001-4381.2019.000122

    CrossRef Google Scholar

    [26] 顾玥, 王功, 段文艳, 等. 陶瓷光固化成型技术的应用与展望[J]. 硅酸盐学报, 2019, 49(5): 867−877.

    Google Scholar

    GU Y, WANG G, DUAN W Y, et al. Application and prospect of photocuring technology for ceramics[J]. Journal of the Chinese Ceramics, 2019, 49(5): 867−877.

    Google Scholar

    [27] LI J P, HABIBOVIC P, VAN DEN DOEL M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 2007, 28(18): 2810−2820. doi: 10.1016/j.biomaterials.2007.02.020

    CrossRef Google Scholar

    [28] 陈典典, 鲍明东, 李鑫, 等. 3D打印氧化硅基陶瓷型芯的各向异性研究[J]. 中国陶瓷, 2019, 56(5): 33−39.

    Google Scholar

    CHEN D D, BAO M D, LI X, et al. Anisotropy of 3D printed silica based ceramic core[J]. Chinese Ceramics, 2019, 56(5): 33−39.

    Google Scholar

    [29] WANG X, ZHOU Y, ZHOU L, et al. Microstructure and properties evolution of silicon−based ceramic cores fabricated by 3D printing with stair−stepping effect control[J]. Journal of the European Ceramic Society, 2021, 41(8): 4650−4657. doi: 10.1016/j.jeurceramsoc.2021.03.036

    CrossRef Google Scholar

    [30] XIA L, QIANG L, YAG. Ceramic processed by slip casting via aqueous slurries[J]. Ceramics International, 2008, 34(2): 397−401. doi: 10.1016/j.ceramint.2006.10.018

    CrossRef Google Scholar

    [31] 侯清麟, 文定, 侯熠徽, 等. 固相含量对熔融石英陶瓷注凝成型的影响[J]. 广州化工, 2016, 44(22): 21−23. doi: 10.3969/j.issn.1001-9677.2016.22.008

    CrossRef Google Scholar

    HOU Q L, WEN D, HOU Y H, et al. Effect of solid phase content on injection formation of fused quartz ceramics[J]. Guangzhou Chemical Industry, 2016, 44(22): 21−23. doi: 10.3969/j.issn.1001-9677.2016.22.008

    CrossRef Google Scholar

    [32] 侯清麟, 王迎霞, 田靓, 等. 熔融石英陶瓷的注凝成型工艺及影响其性能的因素[J]. 广州化工, 2018, 46(2): 1−2+18. doi: 10.3969/j.issn.1001-9677.2018.02.002

    CrossRef Google Scholar

    HOU Q L, WANG Y X, TIAN L, et al. Injection moulding process and factors affecting properties of fused quartz ceramics[J]. Guangzhou Chemical Industry, 2018, 46(2): 1−2+18. doi: 10.3969/j.issn.1001-9677.2018.02.002

    CrossRef Google Scholar

    [33] WAN W, HUANG C E, YANG J, et al. Effect of sintering temperature on the properties of fused silica ceramics prepared by gelcasting[J]. Journal of Electronic Materials, 2014, 43(7): 2566−2572. doi: 10.1007/s11664-014-3112-7

    CrossRef Google Scholar

    [34] WAN W, YANG J, JIN Z, et al. Effect of solid loading on gelcasting of silica ceramics using DMAA[J]. Ceramics International, 2014, 40(1): 1735−1740. doi: 10.1016/j.ceramint.2013.07.071

    CrossRef Google Scholar

    [35] WAN W, YANG J, ZENG J, et al. Gelcasting of fused silica glass using a low−toxicity monomer DMAA[J]. Journal of Non−Crystalline Solids, 2013, 379: 229−234. doi: 10.1016/j.jnoncrysol.2013.08.017

    CrossRef Google Scholar

    [36] KANDI K K, PAL S K, RAO C S P. Effect of dispersant on the rheological properties of gelcast fused silica ceramics[C]. IOP Conference Series: Materials Science and Engineering, 2016, 149.

    Google Scholar

    [37] 陈越军, 卜景龙, 崔燚, 等. 添加纳米Y2O3或纳米ZnO对熔融石英陶瓷脱玻性能的影响[J]. 耐火材料, 2019, 53(1): 61−64. doi: 10.3969/j.issn.1001-1935.2019.01.015

    CrossRef Google Scholar

    CHEN Y J, BU J L, CUI Y, et al. Effect of addition of nano−Y2O3 or nano−ZnO on deglassing properties of fused quartz ceramics[J]. Journal of Refractories, 2019, 53(1): 61−64. doi: 10.3969/j.issn.1001-1935.2019.01.015

    CrossRef Google Scholar

    [38] 王金波. 熔融石英陶瓷的等静压成型及烧结工艺研究[D]. 武汉: 华中科技大学, 2009.

    Google Scholar

    WANG J B. Research on isostatic pressing and sintering process of fused quartz ceramics[D]. Wuhan: Huazhong University of Science and Technology, 2009.

    Google Scholar

    [39] 闫法强, 陈斐, 沈强, 等. 放电等离子烧结技术制备熔融石英陶瓷[J]. 硅酸盐通报, 2007(2): 362−365+381. doi: 10.3969/j.issn.1001-1625.2007.02.032

    CrossRef Google Scholar

    YAN F Q, CHEN F, SHEN Q, et al. Preparation of fused quartz ceramics by discharge plasma sintering[J]. Bulletin of Ceramics, 2007(2): 362−365+381. doi: 10.3969/j.issn.1001-1625.2007.02.032

    CrossRef Google Scholar

    [40] LI H, HU K, LIU Y, et al. Improved mechanical properties of silica ceramic cores prepared by 3D printing and sintering processe[J]. Scripta Materialia, 2021: 113665.

    Google Scholar

    [41] JUNIOR A D N, HOTZA D, SOLER V C, et al. Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates[J]. Journal of the European Ceramic Society, 2009, 29(6): 1039−1046. doi: 10.1016/j.jeurceramsoc.2008.07.052

    CrossRef Google Scholar

    [42] ZAICHUK A, AMELINA A, KALISHENKO Y, et al. Aspects of development and properties of densely sintered of ultra−high−frequency radio−transparent ceramics of cordierite composition[J]. Journal of the Korean Ceramic Society, 2021, 58(4): 483−494. doi: 10.1007/s43207-021-00125-5

    CrossRef Google Scholar

    [43] LIANG D, HUANG J, ZHANG H, et al. Influencing factors on the performance of tubular ceramic membrane supports prepared by extrusion[J]. Ceramics International, 2021, 47(8): 10464−10477. doi: 10.1016/j.ceramint.2020.12.235

    CrossRef Google Scholar

    [44] 鄢文超. 添加剂对熔融石英陶瓷析晶和致密化的影响[D]. 武汉: 华中科技大学, 2012.

    Google Scholar

    YAN W C. Effect of additives on crystallization and densification of fused quartz ceramics[D]. Wuhan: Huazhong University of Science and Technology, 2012.

    Google Scholar

    [45] JIA D C, ZHOU Y, LEI T C. Ambient and elevated temperature mechanical properties of hot−pressed fused silica matrix composite[J]. Journal of the European Ceramic Society, 2003, 23(5): 801−808. doi: 10.1016/S0955-2219(02)00156-5

    CrossRef Google Scholar

    [46] 张磊. 氧化锆增强熔融硅陶瓷的力学和电学性能[J]. 金属功能材料, 2022, 29(3): 41−46.

    Google Scholar

    ZHANG L. Mechanical and electrical properties of fused silicon ceramics enhanced by zirconia[J]. Metal Functional Materials, 2022, 29(3): 41−46.

    Google Scholar

    [47] LIANG L. Study on preparation of quartz ceramics toughened with mineralizer[J]. Integrated Ferroelectrics, 2020, 207(1): 197−207. doi: 10.1080/10584587.2020.1728679

    CrossRef Google Scholar

    [48] XU C M, WANG S W. Roles of oxygen and hydrogen in the amorphization of cristobalite[J]. Journal of the American Ceramic Society, 2007, 90(10): 3268−3273. doi: 10.1111/j.1551-2916.2007.01897.x

    CrossRef Google Scholar

    [49] 王清涛. 高强度熔融石英陶瓷的制备研究[D]. 淄博: 山东理工大学, 2019.

    Google Scholar

    WANG Q T. Preparation of high strength fused quartz ceramics[D]. Zibo: Shandong University of Technology, 2019.

    Google Scholar

    [50] 李友胜, 韩志强, 李楠. 外加剂对熔融石英陶瓷烧结性能的影响[J]. 耐火材料, 2004(5): 334−335+346. doi: 10.3969/j.issn.1001-1935.2004.05.011

    CrossRef Google Scholar

    LI Y S, HAN Z Q, LI N. Effect of admixtures on sintering properties of fused quartz ceramics[J]. Refractory Materials, 2004(5): 334−335+346. doi: 10.3969/j.issn.1001-1935.2004.05.011

    CrossRef Google Scholar

    [51] 谷莹蕾, 李勇, 卜景龙, 等. 纳米级SnO2或Yb2O3对熔融石英陶瓷析晶性能的影响[J]. 人工晶体学报, 2019, 50(5): 927−932.

    Google Scholar

    GU Y L, LI Y, BU J L, et al. Effect of nano−sized SnO2 or Yb2O3 on crystallization performance of fused quartz ceramics[J]. Journal of Intraocular Lenses, 2019, 50(5): 927−932.

    Google Scholar

    [52] 陈越军, 张璞, 吕东风, 等. 纳米氧化镧对熔融石英陶瓷析晶动力学的影响[J]. 中国陶瓷, 2019, 55(9): 43−48.

    Google Scholar

    CHEN Y J, ZHANG P, LV D F, et al. Effect of nanocrystalline lanthanum oxide on crystallization kinetics of fused quartz Ceramics[J]. China ceramics, 2019, 55(9): 43−48.

    Google Scholar

    [53] 谷莹蕾, 卜景龙, 陈越军, 等. 纳米Nd2O3对熔融石英析晶机制的影响[J]. 耐火材料, 2014, 48(4): 249−253. doi: 10.3969/j.issn.1001-1935.2014.04.003

    CrossRef Google Scholar

    GU Y L, BU J L, CHEN Y J, et al. Effect of nano Nd2O3 on crystallization mechanism of fused quartz[J]. Refractory Materials, 2014, 48(4): 249−253. doi: 10.3969/j.issn.1001-1935.2014.04.003

    CrossRef Google Scholar

    [54] 李娜. 利用二氧化硅基空心微珠制备多孔陶瓷天线罩材料及性能研究[D]. 太原: 中北大学, 2016.

    Google Scholar

    LI N. Study on materials and properties of porous ceramic radome prepared by silica hollow microbeads[D]. Taiyuan: North University of China, 2016.

    Google Scholar

    [55] YANG X, LI B, LI D, et al. Fabrication and oxidation resistance of silicon nitride fiber reinforced silica matrix wave−transparent composites[J]. Journal of Materials Science & Technology, 2019, 35(12): 2761−2766.

    Google Scholar

    [56] 陈虹, 胡利明, 贾光耀, 等. 陶瓷天线罩材料的研究进展[J]. 硅酸盐通报, 2002(4): 40−44. doi: 10.3969/j.issn.1001-1625.2002.04.009

    CrossRef Google Scholar

    CHEN H, HU L M, JIA G Y, et al. Research progress of ceramic radome materials[J]. Bulletin of Ceramics, 2002(4): 40−44. doi: 10.3969/j.issn.1001-1625.2002.04.009

    CrossRef Google Scholar

    [57] 刘学理. 石英陶瓷在浮法玻璃生产中的应用[J]. 玻璃, 2021, 48(7): 26−30. doi: 10.3969/j.issn.1003-1987.2021.07.007

    CrossRef Google Scholar

    LIU X L. Application of quartz ceramics in the production of float glass[J]. Glass, 2021, 48(7): 26−30. doi: 10.3969/j.issn.1003-1987.2021.07.007

    CrossRef Google Scholar

    [58] 唐福恒, 盛利军, 赵世博. L型吊墙前端采用耐火材料砖砌挡火门是发展趋势[J]. 玻璃, 2014, 41(3): 3−8.

    Google Scholar

    TANG F H, SHENG L J, ZHAO S B. The use of refractory brick fire door in front of L−type hanging wall is a development trend[J]. Glass, 2014, 41(3): 3−8.

    Google Scholar

    [59] 赵建国, 袁向东, 崔文亮, 等. 熔融石英陶瓷产品在浮法玻璃热工设备上的应用[J]. 玻璃, 2001(2): 30−33. doi: 10.3969/j.issn.1003-1987.2001.02.007

    CrossRef Google Scholar

    ZHAO J G, YUAN X D, CUI W L, et al. Application of fused quartz ceramic products in float glass thermal equipment[J]. Glass, 2001(2): 30−33. doi: 10.3969/j.issn.1003-1987.2001.02.007

    CrossRef Google Scholar

    [60] 刘得利. 石英陶瓷电器绝缘材料[J]. 佛山陶瓷, 2002(11): 33. doi: 10.3969/j.issn.1006-8236.2002.11.013

    CrossRef Google Scholar

    LIU D L. Quartz ceramic electrical insulation materials[J]. Foshan Ceramics, 2002(11): 33. doi: 10.3969/j.issn.1006-8236.2002.11.013

    CrossRef Google Scholar

    [61] SUZDAL'TSEV E I. Fabrication of high−density quartz ceramics: research and practical aspects. part 3. Sintering of quartz ceramics[J]. Refractories and Industrial Ceramics, 2005, 46(6): 384−390. doi: 10.1007/s11148-006-0032-y

    CrossRef Google Scholar

    [62] 戴斌煜, 王薇薇, 商景利. 低压铸造陶瓷升液管材料抗热震性研究[J]. 铸造技术, 2008, 29(12): 1677−1680.

    Google Scholar

    DAI B Y, WANG W W, SHANG J L. Thermal shock resistance of ceramic riser materials for low pressure casting[J]. Foundry Technology, 2008, 29(12): 1677−1680.

    Google Scholar

    [63] 刘孝福, 娄延春, 齐笑冰, 等. 低压铸造技术在铜合金和黑色金属领域的发展和应用[J]. 铸造, 2006(6): 585−588. doi: 10.3321/j.issn:1001-4977.2006.06.016

    CrossRef Google Scholar

    LIU X F, LOU Y C, QI X B, et al. Development and application of low pressure casting technology in copper alloys and ferrous metals[J]. Foundry, 2006(6): 585−588. doi: 10.3321/j.issn:1001-4977.2006.06.016

    CrossRef Google Scholar

    [64] 米国发, 赵恒涛. 低压铸造升液管的研究与应用[J]. 航天制造技术, 2007(4): 56−59.

    Google Scholar

    MI G F, ZHAO H T. Research and application of low pressure casting riser[J]. Aerospace Manufacturing Technology, 2007(4): 56−59.

    Google Scholar

    [65] 张晓艳. 熔融石英坩埚的制备及其析晶行为研究[D]. 天津: 天津大学, 2014.

    Google Scholar

    ZHANG X Y. Study on preparation and crystallization behavior of fused quartz crucible[D]. Tianjin: Tianjin University, 2014.

    Google Scholar

    [66] 贾建广. 多晶硅铸锭用高纯表面处理石英陶瓷坩埚[Z]. 新余:江西中材太阳能新材料有限公司, 2018−03−25.

    Google Scholar

    JIA J G. High purity surface treatment quartz ceramic crucible for polysilicon ingot casting [Z]. Jiangxi Province, Jiangxi Sinocai Solar New Materials Co. LTD, 2018−03−25.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(471) PDF downloads(16) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint