Citation: | LIAO Yucheng, FU Kaibin, ZOU Wen, LIU Xun, GONG Yongchao, OU Renze, CHEN Shu, YANG Yuankun, JING Xiaoyan, YANG Dehua. Optimization of Waste Rock−Tailings Cemented Backfill Mix Proportion Based on RSM-BBD[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 113-121. doi: 10.13779/j.cnki.issn1001-0076.2024.06.008 |
To address the issue of low strength in cemented fully tailings backfill and the susceptibility to pipe blockage during high−concentration filling, a mixed aggregate composed of waste rock and tailings as an alternative to single tailings aggregate for underground filling. In order to determine the optimal ratio of filling slurry, the physical and chemical properties of filling materials were characterized, and the grading of waste rock aggregate according to the Talbol theory. using the Box−Behnken central composite design and Response Surface Methodology (RSM) in the Design−Expert software, the effects of tailings−to−binder ratio, waste rock mass fraction, and slurry mass concentration on the mechanical strength of the filling body and the flowability of the filling slurry were systematically investigated. A ternary quadratic regression model was then established, taking the compressive strength and flowability of the filling slurry at different curing ages as response values, and its applicability was validated. The results revealed that the interaction between the tailings−to−binder ratio and slurry mass concentration significantly influenced the strength of the filling body, while the interaction between the waste rock mass fraction and slurry mass concentration prominently affected the flowability of the filling slurry. By setting the minimum filling cost as the optimization objective, a conditionally constrained model was established, yielding optimized filling slurry proportions of a 7∶1 tailings−to−binder ratio, 70% waste rock mass fraction, 84% slurry mass concentration, with a slurry consistency of 114 mm and a 28 day compressive strength of 5.13 MPa. These optimized proportions meet the requirements for both filling body strength and slurry flowability in mining applications.
[1] | WU A, RUAN Z, BüRGER R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology[J]. Minerals Engineering, 2020, 156: 106488. doi: 10.1016/j.mineng.2020.106488 |
[2] | 程海勇, 吴爱祥, 吴顺川, 等. 金属矿山固废充填研究现状与发展趋势[J]. 工程科学学报, 2022, 44(1): 11−25. doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002 CHENG H Y, WU A X, WU S C, et al. Current status and development trend of solid waste filling research in metal mines[J]. Journal of Engineering Science, 2022, 44(1): 11−25. doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002 |
[3] | 尹升华, 郝硕, 邹龙, 等. 基于RSM的胶结充填体强度回归及料浆寻优研究[J]. 中南大学学报(自然科学版), 2020, 51(6): 1595−1605. YIN S H, HAO S, ZOU L, et al. RSM−based strength regression of cemented filler and optimization of slurry[J]. Journal of Central South University (Natural Science Edition), 2020, 51(6): 1595−1605. |
[4] | 高谦, 杨晓炳, 温震江, 等. 基于RSM−BBD的混合骨料充填料浆配比优化[J]. 湖南大学学报(自然科学版), 2019, 46(6): 47−55. GAO Q, YANG X B, WEN Z J, et al. Optimization of mixed aggregate filling slurry ratio based on RSM−BBD[J]. Journal of Hunan University(Natural Science Edition), 2019, 46(6): 47−55. |
[5] | 李广波, 吴再海, 盛宇航, 等. 基于响应面法的废石−细尾砂充填性能优化试验[J]. 有色金属工程, 2024, 14(4): 140−149. doi: 10.3969/j.issn.2095-1744.2024.04.018 LI G B, WU Z H, SHENG Y H, et al. Optimization test of filling performance of waste rock−fine tailing sand based on response surface method[J]. Nonferrous Metal Engineering, 2024, 14(4): 140−149. doi: 10.3969/j.issn.2095-1744.2024.04.018 |
[6] | 付自国, 乔登攀, 郭忠林, 等. 基于RSM−BBD的废石−风砂胶结体配合比与强度试验研究[J]. 煤炭学报, 2018, 43(3): 694−703. FU Z G, QIAO D P, GUO Z L, et al. Experimental research on fit ratio and strength of waste rock−wind sand cement based on RSM−BBD[J]. Journal of Coal, 2018, 43(3): 694−703. |
[7] | 温震江, 高谦, 陈得信, 等. 混合骨料级配对充填料浆离析的影响[J]. 中南大学学报(自然科学版), 2019, 50(9): 2264−2272. WEN Z J, GAO Q, CHEN D X, et al. Effect of mixed aggregate gradation on segregation of filling slurry[J]. Journal of Central South University (Natural Science Edition), 2019, 50(9): 2264−2272. |
[8] | 邓国梁, 梁炳金, 史文豪, 等. 废石胶结充填体配比优化及与围岩合理匹配研究[J]. 矿业研究与开发, 2023, 43(7): 12−18. DENG G L, LIANG B J, SHI W H, et al. Optimization of proportioning of waste rock cemented filler and reasonable matching with surrounding rock[J]. Mining Research and Development, 2023, 43(7): 12−18. |
[9] | 于恩毅, 黄旭东, 王珍岐, 等. 废石掺量对胶结充填体强度及变形破坏的影响[J]. 金属矿山, 2020(8): 44−48. YU E Y, HUANG X D, WANG Z Q, et al. Effects of waste rock dosage on the strength and deformation damage of cemented filler[J]. Metal Mining, 2020(8): 44−48. |
[10] | 于恩毅, 黄旭东, 龚甲桂. 基于RSM−BBD的废石−全尾砂胶结充填体强度试验研究[J]. 矿业研究与开发, 2020, 40(7): 75−80. YU E Y, HUANG X D, GONG J G. Experimental study on the strength of waste rock−whole tailing sand cemented filler based on RSM−BBD[J]. Mining Research and Development, 2020, 40(7): 75−80. |
[11] | 刘超军, 柯丽华, 姚囝, 等. 肖家河磷矿碎石胶结充填体强度及变形破坏特征试验研究[J]. 中国矿业, 2023, 32(5): 124−30+37. doi: 10.12075/j.issn.1004-4051.2023.05.003 LIU C J, KE L H, YAO N, et al. Experimental study on the strength and deformation damage characteristics of gravel cemented filler in Xiaojiahe phosphate mine[J]. China Mining Industry, 2023, 32(5): 124−30+37. doi: 10.12075/j.issn.1004-4051.2023.05.003 |
[12] | 刘树龙, 王发刚, 李公成, 等. 基于响应面法的复合充填料浆配比优化及微观结构影响机制[J]. 复合材料学报, 2021, 38(8): 2724−2736. LIU S L, WANG F G, LI G C, et al. Optimization of composite filling slurry ratio and microstructure influence mechanism based on response surface methodology[J]. Journal of Composite Materials, 2021, 38(8): 2724−2736. |
[13] | 赵新元, 杨科, 何祥, 等. 基于RSM−BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 153−159. doi: 10.11896/cldb.22090099 ZHAO X Y, YANG K, HE X, et al. Research on the proportioning and performance of multi−source coal−based solid waste cements based on RSM−BBD[J]. Materials Herald, 2024, 38(9): 153−159. doi: 10.11896/cldb.22090099 |
[14] | 常悦, 赵志云, 王向玲, 等. 矿渣−粉煤灰基胶凝材料性能调控及其在铅锌矿尾砂胶结充填中的应用[J]. 有色金属工程, 2023, 13(4): 93−101. doi: 10.3969/j.issn.2095-1744.2023.04.012 CHANG Y, ZHAO Z Y, WANG X L, et al. Performance modulation of slag−fly ash−based cementitious materials and their application in cementitious filling of lead−zinc mine tailings[J]. Nonferrous Metal Engineering, 2023, 13(4): 93−101. doi: 10.3969/j.issn.2095-1744.2023.04.012 |
[15] | 李杰林, 李奥, 郝建璋, 等. 提钛炉渣−铁基全尾砂−水泥胶结充填体配比实验研究[J]. 矿业科学学报, 2023, 8(6): 838−846. LI J L, LI A, HAO J Z, et al. Experimental study on the ratio of titanium slag−iron based full tailing sand−cement cemented filler[J]. Journal of Mining Science, 2023, 8(6): 838−846. |
[16] | 朱庚杰, 朱万成, 齐兆军, 等. 固废基充填胶凝材料配比分步优化及其水化胶结机理[J]. 工程科学学报, 2023, 45(8): 1304−1315. ZHU G J, ZHU W C, QI Z J, et al. Step−by−step optimization of solid−waste−based filling cementitious materials and their hydration and cementation mechanism[J]. Journal of Engineering Science, 2023, 45(8): 1304−1315. |
[17] | 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41−45. doi: 10.3969/j.issn.1006-7167.2015.08.011 LI L, ZHANG S, HE Q, et al. Application of response surface methodology in experimental design and optimization[J]. Laboratory Research and Exploration, 2015, 34(8): 41−45. doi: 10.3969/j.issn.1006-7167.2015.08.011 |
[18] | 温震江, 高谦, 王永定, 等. 不同浓度料浆流变特性与混合骨料级配相关性试验[J]. 东北大学学报(自然科学版), 2020, 41(5): 642−648. doi: 10.12068/j.issn.1005-3026.2020.05.006 WEN Z J, GAO Q, WANG Y D, et al. Experiment on the correlation between rheological properties of slurry of different consistency and gradation of mixed aggregate[J]. Journal of Northeastern University (Natural Science Edition), 2020, 41(5): 642−648. doi: 10.12068/j.issn.1005-3026.2020.05.006 |
[19] | 巴蕾, 卓庆奉, 王晶, 等. 矸石膏体流动与强度性能试验研究[J]. 有色金属(矿山部分), 2024, 76(5): 74−81+92. BA L, ZHUO Q F, WANG J, et al. Experimental study on flow and strength properties of gangue gypsum[J]. Nonferrous metals(Mining section), 2024, 76(5): 74−81+92. |
[20] | 姚维信. 矿山粗骨料高浓度充填理论研究与应用[D]. 昆明: 昆明理工大学, 2011. YAO W X. Theoretical research and application of high concentration filling of mine coarse aggregate[D]. Kunming: Kunming University of Science and Technology, 2011. |
Particle size distribution of tailings (a) and XRD patterns (b)
Negative cumulative particle size distribution characteristics of crushed waste rock
Packing density curve of waste rock−tailings mixture
Three−dimensional scatter plot of measured versus predicted relative error
Effect of single response surface factors on strength of backfill: (a—effect of tailling−to−binder ratio on strength at different ages; b—effect of waste rock mass fraction on strength at different ages; c—effect of slurry mass concentration on strength at different curing ages)
Effect of single response surface factors on slurry flowability: (a—effect of tailings−to−binder ratio on slurry flowability; b—Waste rock mass fraction on slurry flowability; c—Influence of slurry mass concentration on slurry flowability)
Effect of interaction of response surface factors on strength (a − effect of tailings−to−binder ratio and waste rock mass fraction on 3 d strength; b − effect of tailings−to−binder ratio and slurry mass concentration on 7 d strength; c − effect of tailings−to−binder ratio and slurry mass concentration on 28 d strength)
Effect of interaction of response surface factors on slurry flowability