Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 6
Article Contents

LIAO Yucheng, FU Kaibin, ZOU Wen, LIU Xun, GONG Yongchao, OU Renze, CHEN Shu, YANG Yuankun, JING Xiaoyan, YANG Dehua. Optimization of Waste Rock−Tailings Cemented Backfill Mix Proportion Based on RSM-BBD[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 113-121. doi: 10.13779/j.cnki.issn1001-0076.2024.06.008
Citation: LIAO Yucheng, FU Kaibin, ZOU Wen, LIU Xun, GONG Yongchao, OU Renze, CHEN Shu, YANG Yuankun, JING Xiaoyan, YANG Dehua. Optimization of Waste Rock−Tailings Cemented Backfill Mix Proportion Based on RSM-BBD[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 113-121. doi: 10.13779/j.cnki.issn1001-0076.2024.06.008

Optimization of Waste Rock−Tailings Cemented Backfill Mix Proportion Based on RSM-BBD

More Information
  • To address the issue of low strength in cemented fully tailings backfill and the susceptibility to pipe blockage during high−concentration filling, a mixed aggregate composed of waste rock and tailings as an alternative to single tailings aggregate for underground filling. In order to determine the optimal ratio of filling slurry, the physical and chemical properties of filling materials were characterized, and the grading of waste rock aggregate according to the Talbol theory. using the Box−Behnken central composite design and Response Surface Methodology (RSM) in the Design−Expert software, the effects of tailings−to−binder ratio, waste rock mass fraction, and slurry mass concentration on the mechanical strength of the filling body and the flowability of the filling slurry were systematically investigated. A ternary quadratic regression model was then established, taking the compressive strength and flowability of the filling slurry at different curing ages as response values, and its applicability was validated. The results revealed that the interaction between the tailings−to−binder ratio and slurry mass concentration significantly influenced the strength of the filling body, while the interaction between the waste rock mass fraction and slurry mass concentration prominently affected the flowability of the filling slurry. By setting the minimum filling cost as the optimization objective, a conditionally constrained model was established, yielding optimized filling slurry proportions of a 7∶1 tailings−to−binder ratio, 70% waste rock mass fraction, 84% slurry mass concentration, with a slurry consistency of 114 mm and a 28 day compressive strength of 5.13 MPa. These optimized proportions meet the requirements for both filling body strength and slurry flowability in mining applications.

  • 加载中
  • [1] WU A, RUAN Z, BüRGER R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology[J]. Minerals Engineering, 2020, 156: 106488. doi: 10.1016/j.mineng.2020.106488

    CrossRef Google Scholar

    [2] 程海勇, 吴爱祥, 吴顺川, 等. 金属矿山固废充填研究现状与发展趋势[J]. 工程科学学报, 2022, 44(1): 11−25. doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002

    CrossRef Google Scholar

    CHENG H Y, WU A X, WU S C, et al. Current status and development trend of solid waste filling research in metal mines[J]. Journal of Engineering Science, 2022, 44(1): 11−25. doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201002

    CrossRef Google Scholar

    [3] 尹升华, 郝硕, 邹龙, 等. 基于RSM的胶结充填体强度回归及料浆寻优研究[J]. 中南大学学报(自然科学版), 2020, 51(6): 1595−1605.

    Google Scholar

    YIN S H, HAO S, ZOU L, et al. RSM−based strength regression of cemented filler and optimization of slurry[J]. Journal of Central South University (Natural Science Edition), 2020, 51(6): 1595−1605.

    Google Scholar

    [4] 高谦, 杨晓炳, 温震江, 等. 基于RSM−BBD的混合骨料充填料浆配比优化[J]. 湖南大学学报(自然科学版), 2019, 46(6): 47−55.

    Google Scholar

    GAO Q, YANG X B, WEN Z J, et al. Optimization of mixed aggregate filling slurry ratio based on RSM−BBD[J]. Journal of Hunan University(Natural Science Edition), 2019, 46(6): 47−55.

    Google Scholar

    [5] 李广波, 吴再海, 盛宇航, 等. 基于响应面法的废石−细尾砂充填性能优化试验[J]. 有色金属工程, 2024, 14(4): 140−149. doi: 10.3969/j.issn.2095-1744.2024.04.018

    CrossRef Google Scholar

    LI G B, WU Z H, SHENG Y H, et al. Optimization test of filling performance of waste rock−fine tailing sand based on response surface method[J]. Nonferrous Metal Engineering, 2024, 14(4): 140−149. doi: 10.3969/j.issn.2095-1744.2024.04.018

    CrossRef Google Scholar

    [6] 付自国, 乔登攀, 郭忠林, 等. 基于RSM−BBD的废石−风砂胶结体配合比与强度试验研究[J]. 煤炭学报, 2018, 43(3): 694−703.

    Google Scholar

    FU Z G, QIAO D P, GUO Z L, et al. Experimental research on fit ratio and strength of waste rock−wind sand cement based on RSM−BBD[J]. Journal of Coal, 2018, 43(3): 694−703.

    Google Scholar

    [7] 温震江, 高谦, 陈得信, 等. 混合骨料级配对充填料浆离析的影响[J]. 中南大学学报(自然科学版), 2019, 50(9): 2264−2272.

    Google Scholar

    WEN Z J, GAO Q, CHEN D X, et al. Effect of mixed aggregate gradation on segregation of filling slurry[J]. Journal of Central South University (Natural Science Edition), 2019, 50(9): 2264−2272.

    Google Scholar

    [8] 邓国梁, 梁炳金, 史文豪, 等. 废石胶结充填体配比优化及与围岩合理匹配研究[J]. 矿业研究与开发, 2023, 43(7): 12−18.

    Google Scholar

    DENG G L, LIANG B J, SHI W H, et al. Optimization of proportioning of waste rock cemented filler and reasonable matching with surrounding rock[J]. Mining Research and Development, 2023, 43(7): 12−18.

    Google Scholar

    [9] 于恩毅, 黄旭东, 王珍岐, 等. 废石掺量对胶结充填体强度及变形破坏的影响[J]. 金属矿山, 2020(8): 44−48.

    Google Scholar

    YU E Y, HUANG X D, WANG Z Q, et al. Effects of waste rock dosage on the strength and deformation damage of cemented filler[J]. Metal Mining, 2020(8): 44−48.

    Google Scholar

    [10] 于恩毅, 黄旭东, 龚甲桂. 基于RSM−BBD的废石−全尾砂胶结充填体强度试验研究[J]. 矿业研究与开发, 2020, 40(7): 75−80.

    Google Scholar

    YU E Y, HUANG X D, GONG J G. Experimental study on the strength of waste rock−whole tailing sand cemented filler based on RSM−BBD[J]. Mining Research and Development, 2020, 40(7): 75−80.

    Google Scholar

    [11] 刘超军, 柯丽华, 姚囝, 等. 肖家河磷矿碎石胶结充填体强度及变形破坏特征试验研究[J]. 中国矿业, 2023, 32(5): 124−30+37. doi: 10.12075/j.issn.1004-4051.2023.05.003

    CrossRef Google Scholar

    LIU C J, KE L H, YAO N, et al. Experimental study on the strength and deformation damage characteristics of gravel cemented filler in Xiaojiahe phosphate mine[J]. China Mining Industry, 2023, 32(5): 124−30+37. doi: 10.12075/j.issn.1004-4051.2023.05.003

    CrossRef Google Scholar

    [12] 刘树龙, 王发刚, 李公成, 等. 基于响应面法的复合充填料浆配比优化及微观结构影响机制[J]. 复合材料学报, 2021, 38(8): 2724−2736.

    Google Scholar

    LIU S L, WANG F G, LI G C, et al. Optimization of composite filling slurry ratio and microstructure influence mechanism based on response surface methodology[J]. Journal of Composite Materials, 2021, 38(8): 2724−2736.

    Google Scholar

    [13] 赵新元, 杨科, 何祥, 等. 基于RSM−BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 153−159. doi: 10.11896/cldb.22090099

    CrossRef Google Scholar

    ZHAO X Y, YANG K, HE X, et al. Research on the proportioning and performance of multi−source coal−based solid waste cements based on RSM−BBD[J]. Materials Herald, 2024, 38(9): 153−159. doi: 10.11896/cldb.22090099

    CrossRef Google Scholar

    [14] 常悦, 赵志云, 王向玲, 等. 矿渣−粉煤灰基胶凝材料性能调控及其在铅锌矿尾砂胶结充填中的应用[J]. 有色金属工程, 2023, 13(4): 93−101. doi: 10.3969/j.issn.2095-1744.2023.04.012

    CrossRef Google Scholar

    CHANG Y, ZHAO Z Y, WANG X L, et al. Performance modulation of slag−fly ash−based cementitious materials and their application in cementitious filling of lead−zinc mine tailings[J]. Nonferrous Metal Engineering, 2023, 13(4): 93−101. doi: 10.3969/j.issn.2095-1744.2023.04.012

    CrossRef Google Scholar

    [15] 李杰林, 李奥, 郝建璋, 等. 提钛炉渣−铁基全尾砂−水泥胶结充填体配比实验研究[J]. 矿业科学学报, 2023, 8(6): 838−846.

    Google Scholar

    LI J L, LI A, HAO J Z, et al. Experimental study on the ratio of titanium slag−iron based full tailing sand−cement cemented filler[J]. Journal of Mining Science, 2023, 8(6): 838−846.

    Google Scholar

    [16] 朱庚杰, 朱万成, 齐兆军, 等. 固废基充填胶凝材料配比分步优化及其水化胶结机理[J]. 工程科学学报, 2023, 45(8): 1304−1315.

    Google Scholar

    ZHU G J, ZHU W C, QI Z J, et al. Step−by−step optimization of solid−waste−based filling cementitious materials and their hydration and cementation mechanism[J]. Journal of Engineering Science, 2023, 45(8): 1304−1315.

    Google Scholar

    [17] 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41−45. doi: 10.3969/j.issn.1006-7167.2015.08.011

    CrossRef Google Scholar

    LI L, ZHANG S, HE Q, et al. Application of response surface methodology in experimental design and optimization[J]. Laboratory Research and Exploration, 2015, 34(8): 41−45. doi: 10.3969/j.issn.1006-7167.2015.08.011

    CrossRef Google Scholar

    [18] 温震江, 高谦, 王永定, 等. 不同浓度料浆流变特性与混合骨料级配相关性试验[J]. 东北大学学报(自然科学版), 2020, 41(5): 642−648. doi: 10.12068/j.issn.1005-3026.2020.05.006

    CrossRef Google Scholar

    WEN Z J, GAO Q, WANG Y D, et al. Experiment on the correlation between rheological properties of slurry of different consistency and gradation of mixed aggregate[J]. Journal of Northeastern University (Natural Science Edition), 2020, 41(5): 642−648. doi: 10.12068/j.issn.1005-3026.2020.05.006

    CrossRef Google Scholar

    [19] 巴蕾, 卓庆奉, 王晶, 等. 矸石膏体流动与强度性能试验研究[J]. 有色金属(矿山部分), 2024, 76(5): 74−81+92.

    Google Scholar

    BA L, ZHUO Q F, WANG J, et al. Experimental study on flow and strength properties of gangue gypsum[J]. Nonferrous metals(Mining section), 2024, 76(5): 74−81+92.

    Google Scholar

    [20] 姚维信. 矿山粗骨料高浓度充填理论研究与应用[D]. 昆明: 昆明理工大学, 2011.

    Google Scholar

    YAO W X. Theoretical research and application of high concentration filling of mine coarse aggregate[D]. Kunming: Kunming University of Science and Technology, 2011.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(6)

Article Metrics

Article views(89) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint