Citation: | LIU Guoyin, SUN Fayuan, DING Junming, DU Degang, YIN Xiuping, ZHANG Kunhua. Structural Parameter Analysis and Stability Calculation of End−of−pit Slope of a Polymetallic Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 74-84. doi: 10.13779/j.cnki.issn1001-0076.2024.04.009 |
The slope stability of open−pit polymetallic mines is the key problem to ensure mine safety and environmental protection. In this paper, orthogonal experimental design, limit equilibrium method and FLAC3D numerical simulation are used to systematically analyze the structural parameters of the end slope of an open−pit mine and verify its stability. Through orthogonal experiment design, slope stability parameters under different slope height, slope Angle and geological conditions were investigated, and the safety factor was calculated by using simplified Bishop method and Morgenstern−Price method. The results showed that under natural conditions, the safety coefficient of each slope was greater than 1.17, which was in line with the standard requirements. In order to further verify the stability of the slope, FLAC3D numerical simulation combined with strength reduction method was used for three−dimensional stability analysis. The simulation results showed that there were some risks in the top and local areas of the slope surface, but the overall safety factor was 1.78, indicating that the slope was in a stable state. This study not only provides theoretical basis and practical guidance for slope design and stability evaluation of open−pit mine, but also provides reference for similar engineering projects, which has important value of improving mining safety and prolonging mine life.
[1] | 陈兰兰, 夏益强, 肖海平, 等. 露天矿边坡稳定性监测方法研究现状及进展[J]. 测绘通报, 2022(5): 7−13. doi: 10.3969/j.issn.0494-0911.2022.5.chtb202205002 CHEN L L, XIA Y Q, XIAO H P, et al. Research status and progress of slop stability monitoring methods in open−pit mines[J]. Bulletin of Surveying and Mapping, 2022(5): 7−13. doi: 10.3969/j.issn.0494-0911.2022.5.chtb202205002 |
[2] | 李全生. 蒙东草原区大型露天煤矿减损开采与生态修复关键技术[J]. 采矿与安全工程学报, 2023, 40(5): 905−915. LI Q S. Key technologies for damage reduction mining and ecological restoration of large−scale open pit coal mines in grassland area of eastern inner Mongolia[J]. Journal of Mining & Safety Engineering, 2023, 40(5): 905−915. |
[3] | 李鸣庚, 张书毕, 高延东, 等. 适用于露天矿时序形变监测的优化DS−InSAR技术[J]. 金属矿山, 2023(1): 110−118. LI M G, ZHANG S B, GAO Y D, et al. Optimized DS−InSAR technology for time series deformation monitoring in open−pit mines[J]. Metal Mine, 2023(1): 110−118. |
[4] | 代永新, 赵武鹍. 露天矿超高边坡灾变影响因素与防控关键技术研究综述[J]. 金属矿山, 2016(11): 1−9. doi: 10.3969/j.issn.1001-1250.2016.11.002 DAI Y X, ZHAO W K. Over about disaster factors critical control technique for super high slope of open−pit mine[J]. Metal Mine, 2016(11): 1−9. doi: 10.3969/j.issn.1001-1250.2016.11.002 |
[5] | 吴礼军, 徐文彬. 邻近高陡边坡采矿爆破振动规律及边坡稳定性分析[J]. 工程爆破, 2022, 28(4): 113−119. WU L J, XU W B. Analysis of blasting vibration law and slope stability in mining near high and steep slope[J]. Engineering Blasting, 2022, 28(4): 113−119. |
[6] | WANG Y, LIU X, ZHANG Z, et al. Analysis on slope stability considering seepage effect on effective stress[J]. KSCE Journal of Civil Engineering, 2016, 20(6): 2235−2242. doi: 10.1007/s12205-015-0646-z |
[7] | 任高峰, 王鑫, 周汉红, 等. 爆破作用下岩溶对边坡稳定性的数值模拟研究[J]. 爆破, 2023, 40(4): 192−200. doi: 10.3963/j.issn.1001-487X.2023.04.025 REN G F, WANG X, ZHOU H H, et al. Numerical simulation of karst effect on slope stability under blasting[J]. Blasting, 2023, 40(4): 192−200. doi: 10.3963/j.issn.1001-487X.2023.04.025 |
[8] | 王文飞, 杨志全, 孟祥瑞, 等. 基于FLAC2D、GPS监测和人工巡视相结合的某矿山排土场边坡稳定性分析[J]. 有色金属(矿山部分), 2023, 75(6): 80−87. WANG W F, YANG Z Q, MENG X R, et al. Slope stability analysis of a mine drainage field based on the combination of FLAC2D, GPS monitoring and manual patrolling[J]. Nonferrous Metals (Mining Section), 2023, 75(6): 80−87. |
[9] | 杨明财, 盛建龙, 叶祖洋, 等. 基于FlAC3D的露天矿边坡稳定性及影响因素敏感性分析[J]. 黄金科学技术, 2018, 26(2): 179−186. doi: 10.11872/j.issn.1005-2518.2018.02.179 YANG M C, SHENG J L, YE Z Y, et al. Analysis of sensitivity factors of open−pit mine slope stability and impact based on FLAC3D[J]. Gold Science and Technology, 2018, 26(2): 179−186. doi: 10.11872/j.issn.1005-2518.2018.02.179 |
[10] | 朱纪朋, 苏怀斌, 赵旭阳, 等. 大型深凹露天矿边坡稳定性研究及智能监测系统应用[J]. 有色金属(矿山部分), 2022, 74(5): 99−105. ZHU J P, SU H B, ZAHO X Y, et al. Study on slope stability of large deep concave open−pit mine and application of intelligent monitoring system[J]. Nonferrous Metals (Mining Section), 2022, 74(5): 99−105. |
[11] | PETER B A, ZHANG Y P, HE J X, et al. Evaluating the dynamic response and failure process of a rock slope under pulse−like ground motions[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2167613. doi: 10.1080/19475705.2023.2167613 |
[12] | BASAHEL H, MITRI H. Probabilistic assessment of rock slopes stability using the response surface approach–A case study[J]. International Journal of Mining Science and Technology, 2019, 29(3): 357−370. doi: 10.1016/j.ijmst.2018.11.002 |
[13] | RINALDO G, ROSELLA P T, CLERVIE G. Mitigation measures of debris flow and landslide risk carried out in two mountain areas of North−Eastern Italy[J]. Journal of Mountain Science, 2022, 19(6): 1808−1822. doi: 10.1007/s11629-021-7212-6 |
[14] | WANG C L, NI W, ZHANG S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials, 2016, 104109−115. |
[15] | 张欢, 王玉银, 耿悦, 等. 考虑基体混凝土抗压强度影响的再生粗(细)骨料混凝土干燥收缩模型[J]. 建筑结构学报, 2020, 41(12): 156−164. ZAHNG H, WANG Y Y, GENG Y, et al. Dry shrinkage model for recycled fine and coarse aggregate concrete considering compressive strength of matrix concrete[J]. Journal of Building Structures, 2020, 41(12): 156−164. |
[16] | 孟君. 露天矿边坡稳定性的仿真模拟研究[J]. 世界科技研究与发展, 2012, 34(3): 379−381. doi: 10.3969/j.issn.1006-6055.2012.03.007 MENG J. Simulate research on open−sit steep slope stability[J]. World Sci−Tech R & D, 2012, 34(3): 379−381. doi: 10.3969/j.issn.1006-6055.2012.03.007 |
[17] | 韩龙强, 吴顺川, 李志鹏. 基于Hoek−Brown准则的非等比强度折减方法[J]. 岩土力学, 2016, 37(S2): 690−696. HAN L Q, WU S C, LI Z P. Study of non−proportional strength reduction method based on Hoek−Brown failure criterion[J]. Rock and Soil Mechanics, 2016, 37(S2): 690−696. |
Full view of the open pit
Profile location map of the current realm
Plot of final slope angle versus factor of safety for different slope heights
Partition of slope structural parameters
Location map of slope profiles in the design realm
Computational modelling of end terrain
Computational modelling of end terrain
Shear strain increment in different sections (a−southeast section; b−southwest section 1; c−southwest section 2; d−northwest section)