Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 4
Article Contents

LIU Guoyin, SUN Fayuan, DING Junming, DU Degang, YIN Xiuping, ZHANG Kunhua. Structural Parameter Analysis and Stability Calculation of End−of−pit Slope of a Polymetallic Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 74-84. doi: 10.13779/j.cnki.issn1001-0076.2024.04.009
Citation: LIU Guoyin, SUN Fayuan, DING Junming, DU Degang, YIN Xiuping, ZHANG Kunhua. Structural Parameter Analysis and Stability Calculation of End−of−pit Slope of a Polymetallic Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 74-84. doi: 10.13779/j.cnki.issn1001-0076.2024.04.009

Structural Parameter Analysis and Stability Calculation of End−of−pit Slope of a Polymetallic Mine

More Information
  • The slope stability of open−pit polymetallic mines is the key problem to ensure mine safety and environmental protection. In this paper, orthogonal experimental design, limit equilibrium method and FLAC3D numerical simulation are used to systematically analyze the structural parameters of the end slope of an open−pit mine and verify its stability. Through orthogonal experiment design, slope stability parameters under different slope height, slope Angle and geological conditions were investigated, and the safety factor was calculated by using simplified Bishop method and Morgenstern−Price method. The results showed that under natural conditions, the safety coefficient of each slope was greater than 1.17, which was in line with the standard requirements. In order to further verify the stability of the slope, FLAC3D numerical simulation combined with strength reduction method was used for three−dimensional stability analysis. The simulation results showed that there were some risks in the top and local areas of the slope surface, but the overall safety factor was 1.78, indicating that the slope was in a stable state. This study not only provides theoretical basis and practical guidance for slope design and stability evaluation of open−pit mine, but also provides reference for similar engineering projects, which has important value of improving mining safety and prolonging mine life.

  • 加载中
  • [1] 陈兰兰, 夏益强, 肖海平, 等. 露天矿边坡稳定性监测方法研究现状及进展[J]. 测绘通报, 2022(5): 7−13. doi: 10.3969/j.issn.0494-0911.2022.5.chtb202205002

    CrossRef Google Scholar

    CHEN L L, XIA Y Q, XIAO H P, et al. Research status and progress of slop stability monitoring methods in open−pit mines[J]. Bulletin of Surveying and Mapping, 2022(5): 7−13. doi: 10.3969/j.issn.0494-0911.2022.5.chtb202205002

    CrossRef Google Scholar

    [2] 李全生. 蒙东草原区大型露天煤矿减损开采与生态修复关键技术[J]. 采矿与安全工程学报, 2023, 40(5): 905−915.

    Google Scholar

    LI Q S. Key technologies for damage reduction mining and ecological restoration of large−scale open pit coal mines in grassland area of eastern inner Mongolia[J]. Journal of Mining & Safety Engineering, 2023, 40(5): 905−915.

    Google Scholar

    [3] 李鸣庚, 张书毕, 高延东, 等. 适用于露天矿时序形变监测的优化DS−InSAR技术[J]. 金属矿山, 2023(1): 110−118.

    Google Scholar

    LI M G, ZHANG S B, GAO Y D, et al. Optimized DS−InSAR technology for time series deformation monitoring in open−pit mines[J]. Metal Mine, 2023(1): 110−118.

    Google Scholar

    [4] 代永新, 赵武鹍. 露天矿超高边坡灾变影响因素与防控关键技术研究综述[J]. 金属矿山, 2016(11): 1−9. doi: 10.3969/j.issn.1001-1250.2016.11.002

    CrossRef Google Scholar

    DAI Y X, ZHAO W K. Over about disaster factors critical control technique for super high slope of open−pit mine[J]. Metal Mine, 2016(11): 1−9. doi: 10.3969/j.issn.1001-1250.2016.11.002

    CrossRef Google Scholar

    [5] 吴礼军, 徐文彬. 邻近高陡边坡采矿爆破振动规律及边坡稳定性分析[J]. 工程爆破, 2022, 28(4): 113−119.

    Google Scholar

    WU L J, XU W B. Analysis of blasting vibration law and slope stability in mining near high and steep slope[J]. Engineering Blasting, 2022, 28(4): 113−119.

    Google Scholar

    [6] WANG Y, LIU X, ZHANG Z, et al. Analysis on slope stability considering seepage effect on effective stress[J]. KSCE Journal of Civil Engineering, 2016, 20(6): 2235−2242. doi: 10.1007/s12205-015-0646-z

    CrossRef Google Scholar

    [7] 任高峰, 王鑫, 周汉红, 等. 爆破作用下岩溶对边坡稳定性的数值模拟研究[J]. 爆破, 2023, 40(4): 192−200. doi: 10.3963/j.issn.1001-487X.2023.04.025

    CrossRef Google Scholar

    REN G F, WANG X, ZHOU H H, et al. Numerical simulation of karst effect on slope stability under blasting[J]. Blasting, 2023, 40(4): 192−200. doi: 10.3963/j.issn.1001-487X.2023.04.025

    CrossRef Google Scholar

    [8] 王文飞, 杨志全, 孟祥瑞, 等. 基于FLAC2D、GPS监测和人工巡视相结合的某矿山排土场边坡稳定性分析[J]. 有色金属(矿山部分), 2023, 75(6): 80−87.

    Google Scholar

    WANG W F, YANG Z Q, MENG X R, et al. Slope stability analysis of a mine drainage field based on the combination of FLAC2D, GPS monitoring and manual patrolling[J]. Nonferrous Metals (Mining Section), 2023, 75(6): 80−87.

    Google Scholar

    [9] 杨明财, 盛建龙, 叶祖洋, 等. 基于FlAC3D的露天矿边坡稳定性及影响因素敏感性分析[J]. 黄金科学技术, 2018, 26(2): 179−186. doi: 10.11872/j.issn.1005-2518.2018.02.179

    CrossRef Google Scholar

    YANG M C, SHENG J L, YE Z Y, et al. Analysis of sensitivity factors of open−pit mine slope stability and impact based on FLAC3D[J]. Gold Science and Technology, 2018, 26(2): 179−186. doi: 10.11872/j.issn.1005-2518.2018.02.179

    CrossRef Google Scholar

    [10] 朱纪朋, 苏怀斌, 赵旭阳, 等. 大型深凹露天矿边坡稳定性研究及智能监测系统应用[J]. 有色金属(矿山部分), 2022, 74(5): 99−105.

    Google Scholar

    ZHU J P, SU H B, ZAHO X Y, et al. Study on slope stability of large deep concave open−pit mine and application of intelligent monitoring system[J]. Nonferrous Metals (Mining Section), 2022, 74(5): 99−105.

    Google Scholar

    [11] PETER B A, ZHANG Y P, HE J X, et al. Evaluating the dynamic response and failure process of a rock slope under pulse−like ground motions[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2167613. doi: 10.1080/19475705.2023.2167613

    CrossRef Google Scholar

    [12] BASAHEL H, MITRI H. Probabilistic assessment of rock slopes stability using the response surface approach–A case study[J]. International Journal of Mining Science and Technology, 2019, 29(3): 357−370. doi: 10.1016/j.ijmst.2018.11.002

    CrossRef Google Scholar

    [13] RINALDO G, ROSELLA P T, CLERVIE G. Mitigation measures of debris flow and landslide risk carried out in two mountain areas of North−Eastern Italy[J]. Journal of Mountain Science, 2022, 19(6): 1808−1822. doi: 10.1007/s11629-021-7212-6

    CrossRef Google Scholar

    [14] WANG C L, NI W, ZHANG S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials, 2016, 104109−115.

    Google Scholar

    [15] 张欢, 王玉银, 耿悦, 等. 考虑基体混凝土抗压强度影响的再生粗(细)骨料混凝土干燥收缩模型[J]. 建筑结构学报, 2020, 41(12): 156−164.

    Google Scholar

    ZAHNG H, WANG Y Y, GENG Y, et al. Dry shrinkage model for recycled fine and coarse aggregate concrete considering compressive strength of matrix concrete[J]. Journal of Building Structures, 2020, 41(12): 156−164.

    Google Scholar

    [16] 孟君. 露天矿边坡稳定性的仿真模拟研究[J]. 世界科技研究与发展, 2012, 34(3): 379−381. doi: 10.3969/j.issn.1006-6055.2012.03.007

    CrossRef Google Scholar

    MENG J. Simulate research on open−sit steep slope stability[J]. World Sci−Tech R & D, 2012, 34(3): 379−381. doi: 10.3969/j.issn.1006-6055.2012.03.007

    CrossRef Google Scholar

    [17] 韩龙强, 吴顺川, 李志鹏. 基于Hoek−Brown准则的非等比强度折减方法[J]. 岩土力学, 2016, 37(S2): 690−696.

    Google Scholar

    HAN L Q, WU S C, LI Z P. Study of non−proportional strength reduction method based on Hoek−Brown failure criterion[J]. Rock and Soil Mechanics, 2016, 37(S2): 690−696.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(8)

Article Metrics

Article views(456) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint