Citation: | LIANG Xiao, WU Jun, QI Wenchao, RAN Qiushuo, LIU Yufa, LIU Lei. Study on the Dynamic Characteristics and Microscopic Damage Features of Shale Under High Temperature[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 48-57. doi: 10.13779/j.cnki.issn1001-0076.2024.04.006 |
The microscopic damage characteristics and macroscopic mechanical properties of shale are closely related under the coupling effect of temperature and impact load. To study the dynamic characteristics and microscopic damage features of shale under high temperature, dynamic impact compression experiments were conducted on shale samples at room temperature (25 ℃) and after high−temperature treatment (200 ℃, 400 ℃, 600 ℃, and 800 ℃) using the Split Hopkinson Pressure Bar (SHPB) experimental system. X−ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to analyze the microstructure of shale samples subjected to different temperatures. The results showed that under the same impact pressure conditions, the dynamic compressive strength and elastic modulus of the samples gradually decreased with increasing temperature, leading to the deterioration of shale strength and increased fragmentation. At a constant temperature, as the impact pressure increased, the strength and deformation of the samples continuously increased, exhibiting a significant strain rate strengthening effect, and the higher the impact pressure, the more pronounced the temperature deterioration effect. With the increase in impact pressure, the transgranular fracture phenomenon in shale samples increased, while with the rise in temperature, a dramatic change in the dynamic properties of shale occured at 400 ℃. At 600~800 ℃, plastic damage features represented by dimples and slip separation appear. The change in mineral composition structure caused by temperature was the main reason for the variation in the mechanical properties of shale.
[1] | 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161−2178. XIE H P, GAO F, JU Y. Research and exploration of deep rock mass mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161−2178. |
[2] | 何满潮, 郭平业. 深部岩体热力学效应及温控对策[J]. 岩石力学与工程学报, 2013, 32(12): 2377−2393. HE M C, GUO P Y. Thermodynamic effects and temperature control measures of deep rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2377−2393. |
[3] | 王思维. 高温后花岗岩在复杂应力下的动态力学性能研究[D]. 西安: 长安大学, 2017. WANG S W. Study on dynamic mechanical properties of granite under complex stress after high temperature[D]. Xi’an: Chang'an University, 2017. |
[4] | 刘磊, 李睿, 秦浩, 等. 高温后深部矽卡岩动力学特性及微观破坏机制研究[J]. 岩土工程学报, 2022, 44(6): 1166−1174. LIU L, LI R, QIN H, et al. Study on dynamic characteristics and microscopic failure mechanism of deepskarn after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1166−1174. |
[5] | 朱振南, 田红, 董楠楠, 等. 高温花岗岩遇水冷却后物理力学特性试验研究[J]. 岩土力学, 2018, 39(S2): 169−176. ZHU Z N, TIAN H, DONG N N, et al. Experimental study on physical and mechanical properties of high temperature granite after water cooling[J]. Rock and Soil Mechanics, 2018, 39(S2): 169−176. |
[6] | TANG Z C, SUN M, PENG J. Influence of high temperature duration on physical, thermal and mechanial properties of a fine−grained marble[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2019, 156: 34−50. |
[7] | MA X, WANG G L, HU D W, et al. Mechanical properties of granite under real–time high temperature and three–dimensional stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 136: 104521. |
[8] | 贾蓬, 杨其要, 刘冬桥, 等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6): 1568–1578. JIA P, YANG Q Y, LIU D Q, et al. Physical and mechanical properties and microfracturecharacteristics of high temperature granite after water cooling[J]. Rock and Soil Mechanics, 201, 42(6): 1568–1578. |
[9] | 赵奎, 李从明, 曾鹏, 等. 持续高温作用下花岗岩特征应力及声发射特征试验研究[J]. 岩石力学与工程学报, 2024,43(7):1580-1592. ZHAO K, LI C M, ZENG P, et al. Experimental study on characteristic stress and acoustic emission characteristics of granite under continuous high temperature[J]. Journal of Rock Mechanics and Engineering, 2024,43(7):1580-1592. |
[10] | 尹土兵, 李夕兵, 王斌, 等. 高温后砂岩动态压缩条件下力学特性研究[J]. 岩土工程学报, 2011, 33(5): 777−784. YIN T B, LI X B, WANG B, et al. Mechanical properties of sandstones after high temperature under dynamic loading[J]. Journal of Geotechnical Engineering, 2011, 33(5): 777−784. |
[11] | 尹土兵, 李夕兵, 殷志强, 等. 高温后砂岩静、动态力学特性研究与比较[J]. 岩石力学与工程学报, 2012, 31(2): 273−279. doi: 10.3969/j.issn.1000-6915.2012.02.006 YIN T B, LI X B, YIN Z Q, et al. Study and comparison of mechanical properties of sandstone under static and dynamic loadings after high temperature[J]. Journal of Rock Mechanics and Engineering, 2012, 31(2): 273−279. doi: 10.3969/j.issn.1000-6915.2012.02.006 |
[12] | FAN L F, WU Z J, WAN Z, et al. Experimental investigation of thermal effects on dynamic behavior of granite[J]. Applied Thermal Engineering, 2017, 125: 94−103. doi: 10.1016/j.applthermaleng.2017.07.007 |
[13] | 平琦, 张传亮, 孙虹键. 不同高温循环作用后砂岩动力特性试验研究[J]. 采矿与安全工程学报, 2021, 38(5): 1015−1024. PING Q, ZHANG C L, SUN H J. Experimental study on dynamic characteristics of sandstone after different high−temperature cycles[J]. Journal of Mining and Safety Engineering, 2021, 38(5): 1015−1024. |
[14] | 田怡萍. 页岩爆燃压裂下裂缝扩展模式数值模拟研究[D]. 绵阳: 西南科技大学, 2019. TIAN Y P. Numerical simulation study of fracture expansion mode under shale explosive fracturing[D]. Mianyang: Southwest University of Science and Technology, 2019. |
[15] | FAN X R, LUO N, LIANG H L, et al. Dynamic breakage characteristics of shale with different bedding angles under the different ambient temperatures[J]. Rock Mechanics and Rock Engineering, 2021, 54(6): 3 245–3 261. |
[16] | 余旭, 王宇, 翟成, 等. 高温–动态冲击作用下页岩微纳米孔隙结构演化特征[J]. 中国安全科学学报, 2023, 33(10): 137−146. YU X, WANG Y, ZHAI C, et al. Characteristics of micro− and nanopore structure evolution of shale under high temperature−dynamic impact[J]. Chinese Journal of Safety Science, 2023, 33(10): 137−146. |
[17] | 张永泽. 鄂西渝东页岩力学性能的各向异性研究[D]. 绵阳: 西南科技大学, 2016. ZHANG Y Z. Anisotropy Study on anisotropy of mechanical properties of the shale in West Hubei and East Chongqing[D]. Mianyang: Southwest University of Science and Technology, 2016. |
[18] | FAIRHURST C E, HUDSON J A. Draft ISRM suggested method for the complete stress–strain curve for intact rock in uniaxial compression[J]. International Journal of Rock Mechanics and Minin Sciences, 1999, 36(3): 281−289. |
[19] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤和岩石物理力学性质测定方法 第7部分: 单轴抗压强度测定及软化系数计算方法:GB/T 23561.7—2009[S].2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. Methods for determiningthe physical and mechanical properties of coal and rock–Part 7: Determination of uniaxial compressive strength and calculation of softening coefficient: GB/T 23561.7—2009[S]. 2009. |
[20] | 王礼立. 应力波基础:第2版[M].北京: 国防工业出版社, 2010: 39–64. WANG L L. Stress wave foundation: 2nd edition[M]. Beijing: National Defense Industry Press, 2010: 39–64. |
[21] | 席道瑛. 花岗岩中矿物相变的物性特征[J]. 矿物学报, 1994(3): 223−227. doi: 10.3321/j.issn:1000-4734.1994.03.003 XI D Y. Physical characteristics of mineral phase transition in granite[J]. Acta Mineralogica Sinica, 1994(3): 223−227. doi: 10.3321/j.issn:1000-4734.1994.03.003 |
[22] | 刘石, 许金余, 刘志群, 等. 温度对岩石强度及损伤特性的影响研究[J]. 采矿与安全工程学报, 2013, 30(4): 583−588. LIU S, XU J Y, LIU Z Q, et al. Study on the influence of temperature on rock strength and damage characteristics[J]. Journal of Mining and Safety Engineering, 2013, 30(4): 583−588. |
[23] | 徐小丽. 温度载荷作用下花岗岩力学性质演化及其微观机制研究[D]. 徐州: 中国矿业大学, 2008. XU X L. Study on the evolution of mechanical properties of granite under temperature loading and its microscopic mechanism[D]. Xuzhou: China University of Mining and Technology, 2008. |
[24] | 陶明, 汪军, 李占文,等. 冲击荷载下花岗岩层裂断口细–微观试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2172−2181. TAO M, WANG J, LI Z W, et al. Fine–microscopic test study of stratified fracture in granite under impact load[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2172−2181. |
Partially processed shale specimens
Heating temperature rise curve
Schematic diagram of the SHPB device
Verification of stress uniformity
Dynamic stress−strain curves of shale after high temperature under different impact pressures
Variation pattern of dynamic compressive strength of shale with temperature
Variation pattern of dynamic elastic modulus of shale with temperature
Failure modes of shale under different impact pressures
XRD phase analysis of shale after different high temperatures
SEM microstructure characteristics of shale under different impact pressures