Citation: | CHEN Hong, JIA Haoqi, HUANG Yonghui, ZHANG Zhiyu. Study on the Propagation Law of Blasting Vibration in an Open−pit Mine Slope Based on FSWT Algorithm[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 29-40. doi: 10.13779/j.cnki.issn1001-0076.2024.04.004 |
In order to master the propagation law of blasting vibration signals of open−pit mine slope under complex conditions, the blasting vibration data measured by Jianshan phosphate mine slope was taken as the research object. The frequency slice wavelet transform (FSWT) and Hilbert−Huang transform (HHT) algorithms were used to analyze the influence of blasting center distance and slope elevation amplification effect on the energy distribution and propagation law of vibration wave. The results showed that when the propagation distance of blasting vibration wave was close, the energy rose and then decreased with time, and the energy distribution was not dense. When the propagation distance of the vibration wave was far, the energy rose slowly and the distribution was relatively concentrated. The vibration energy at the bottom of the slope was mainly concentrated in the high frequency band of 93.75~125 Hz and contained a large amount of high frequency energy, and the vibration energy at the top was mainly concentrated in the low frequency band of 0~46.87 Hz and contained a large amount of low frequency energy.The energy proportion of No.3 machine in 1972 platform in the frequency range of 0~46.87 Hz was 69.45% on average, while those of No.1 and No.2 machines were 51.37% and 42.55% respectively. The former was 18.08 and 26.9 percentage points higher than the latter two respectively. The explosion center distance of No.4 machine was farther than that of No.3 machine, and its low−frequency energy should be greater than that of No.3 machine. However, the average energy proportion of No.3 machine in the frequency range of 0~46.87 Hz was 24.32 percentage points higher than that of No.4 machine. The elevation effect was more obvious than the influence of explosion center distance. The high−frequency energy at the top relative to the bottom showed an elevation attenuation effect, and the low−frequency energy at the top relative to the bottom showed an elevation amplification effect.
[1] | 林海松. 高边坡爆破振动传播规律及其控制技术[J]. 工程爆破, 2020, 26(2): 69−74+86. LIN H S. Blasting vibration propagation law of high slope and its control technology[J]. Engineering Blasting, 2020, 26(2): 69−74+86. |
[2] | 张勤彬, 程贵海, 卢欣奇, 等. 考虑岩体损伤的爆破振动速度衰减多元非线性模型[J]. 中国安全生产科学技术, 2018, 14(3): 95−101. doi: 10.11731/j.issn.1673-193x.2018.03.014 ZHANG Q B, CHENG G H, LU X Q, et al. Multivariate nonlinear model of blast vibration velocity attenuation considering rock damage[J]. China Safety Production Science and Technology, 2018, 14(3): 95−101. doi: 10.11731/j.issn.1673-193x.2018.03.014 |
[3] | 李洪涛, 杨兴国, 舒大强, 等. 不同爆源形式的爆破地震能量分布特征[J]. 四川大学学报(工程科学版), 2010, 42(1): 30−34. LI H T, YANG X G, SHU D Q, et al. Study on energy distribution characteristics of seismic waves induced by different forms of blasting resource[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(1): 30−34. |
[4] | 沙仙武, 陈才贤, 李佳建. 巨龙铜矿地应力对大断面巷道稳定性与岩爆倾向性数值模拟[J]. 矿产保护与利用, 2024, 44(2): 52−57. SHA X W, CHEN C X, LI J J. Numerical simulation of ground stress on stability and rockburst tendency of large section roadway in Julong Copper Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2): 52−57. |
[5] | 陈明, 卢文波, 李鹏, 等. 岩质边坡爆破振动速度的高程放大效应研究[J]. 岩石力学与工程学报, 2011, 30(11): 2189−2195. CHEN M, LU W B, LI P, et al. Elevation amplification effect of blasting vibration velocity in rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2189−2195. |
[6] | 王文才, 孟刚, 常建平, 等. 高村露天铁矿爆破振动传播规律研究[J]. 露天采矿技术, 2018, 33(6): 69−72. WANG W C, MENG G, CHANG J P, et al. Research on blasting vibration propagation law of Gaocun open−pit iron ore mine[J]. Open Pit Mining Technology, 2018, 33(6): 69−72. |
[7] | 彭亚雄, 吴立, 苏莹, 等. 考虑高程效应的水下爆破振动衰减拟合模型研究[J]. 振动与冲击, 2016, 35(13): 173−178. PENG Y X, WU L, SU Y, et al. Fitting models of underwater blasting vibration attenuation considering effects of elevation[J]. Journal of Vibration and Shock, 2016, 35(13): 173−178. |
[8] | 韩宜康, 杨长卫, 张建经, 等. 坡面角度对岩质边坡加速度高程放大效应的影响[J]. 地震工程学报, 2014, 36(4): 874−880. doi: 10.3969/j.issn.1000-0844.2014.04.0874 HAN Y K, YANG C W, ZHANG J J, et al. The influence of slope angle on the elevation amplification effect of rock slope acceleration[J]. China Earthquake Engineering Journal, 2014, 36(4): 874−880. doi: 10.3969/j.issn.1000-0844.2014.04.0874 |
[9] | 李祥龙, 赵泽虎, 王建国, 等. 基于EMD−HHT和小波理论的地下浅孔爆破振动规律研究[J]. 有色金属工程, 2021, 11(12): 100−108. LI X L, ZHAO Z H , WANG J G, et al. Research on vibration law of underground shallow hole blasting based on EMD−HHT and wavelet theory[J]. Nonferrous Metals Engineering, 2021, 11(12): 100−108. |
[10] | 武旭. 台阶地形爆破地震波传播规律研究[D]. 唐山: 华北理工大学, 2015. WU X. Research on seismic wave propagation law of terrace terrain blasting[D]. Tangshan: North China University of Science and Technology, 2015. |
[11] | 阳生权, 张家辉, 吕中玉, 等. 较大高程差迎波坡面爆破地震地形效应分析[J]. 工程爆破, 2021, 27(1): 22−28. YANG S Q, ZHANG J H, LYU Z Y, et al. Blasting seismic topographic effects of follow−wave slope with higher differential elevation[J]. Engineering Blasting, 2021, 27(1): 22−28. |
[12] | 张耿城, 郭连军, 贾建军, 等. 某露天铁矿爆破振动对边坡的动态响应特征研究[J]. 中国矿业, 2020, 29(12): 165−169. doi: 10.12075/j.issn.1004-4051.2020.12.011 ZHANG G C, GUO L J, JIA J J, et al. Research on dynamic response characteristics of blasting vibration on slope in an open−pit iron ore mine[J]. China Mining Industry, 2020, 29(12): 165−169. doi: 10.12075/j.issn.1004-4051.2020.12.011 |
[13] | 程小兵, 何申中, 吴红波, 等. 二氧化碳爆破效果及振动分析[J]. 煤矿爆破, 2023, 41(3): 26−30. doi: 10.3969/j.issn.1674-3970.2023.03.005 CHENG X B, HE S Z, WU H B, et al. Effect and vibration analysis of carbon dioxide blasting[J]. Coal Mine Blasting, 2023, 41(3): 26−30. doi: 10.3969/j.issn.1674-3970.2023.03.005 |
[14] | 陈吉辉, 仇文革, 赵旭伟, 等. 基于小波包技术地铁隧道分区爆破振动特性研究[J]. 振动与冲击, 2022, 41(6): 222−228+255. CHEN J H, QIU W G, ZHAO X W, et al. Vibration characteristics analysis of the metro tunnel subarea blasting based on wavelet packet technique[J]. Journal of Vibration and Shock, 2022, 41(6): 222−228+255. |
[15] | 周建敏, 汪旭光, 龚敏, 等. 缓冲孔对爆破振动信号幅频特性影响研究[J]. 振动与冲击, 2020, 39(1): 240−244+280. ZHOU J M, WANG X G, GONG M, et al. Effects of buffer hole on amplitude−frequency features of blast vibration signals[J]. Journal of Vibration and Shock, 2020, 39(1): 240−244+280. |
[16] | 路亮, 龙源, 谢全民, 等. 提升小波包最优基分解算法在爆破振动信号分析中的应用研究[J]. 振动与冲击, 2014(5): 165−169+186. LU L, LONG Y, XIE Q M, et al. Application of lifting wavelet packet decomposing algorithm based on optimal basis in blasting vibration signal analysis[J]. Journal of Vibration and Shock, 2014(5): 165−169+186. |
[17] | 范伟强, 刘毅. 基于自适应小波变换的煤矿降质图像模糊增强算法[J]. 煤炭学报, 2020, 45(12): 4248−4260. FAN W Q, LIU Y. Fuzzy enhancement algorithm of coal mine degradation image based on adaptive wavelet transform[J]. Journal of China Coal Society, 2020, 45(12): 4248−4260. |
[18] | 王坤, 李凌均, 郝旺身, 等. 全矢FSWT方法在轴承故障诊断中的应用[J]. 机械设计与制造, 2023(12): 205−208. doi: 10.3969/j.issn.1001-3997.2023.12.044 WANG K, LI L J, HAO W S, et al. Application of full vector FSWT method in bearing fault diagnosis[J]. Mechanical Design and Manufacturing, 2023(12): 205−208. doi: 10.3969/j.issn.1001-3997.2023.12.044 |
[19] | 杨彦鑫, 路华, 林子雲, 等. 基于希尔伯特黄变换的场地液化识别方法研究[J]. 灾害学, 2024, 39(3): 36−42. YANG Y X, LU H, LIN Z Y, et al. Research on site liquefaction identification method based on Hilbert's yellow transform[J]. Disaster Science, 2024, 39(3): 36−42. |
On−site schematic diagram (a—On−site charge; b—Jianshan open−pit slope; c—Blasting monitoring point layout)
2023.07.30 Blasting vibration waveform monitoring results (a—Machine 1; b—Machine 2; c—Machine 3; d—Machine 4)
2023.08.27 Blasting vibration waveform monitoring results (a—Machine 1; b—Machine 2; c—Machine 3; d—Machine 4)
2023.09.23 Blasting vibration waveform monitoring results (a—Machine 1; b—Machine 2; c—Machine 3)
2023.08.27 Modal component curve (a—Machine 1; b—Machine 2; c—Machine 3; d—Machine 4)
2023.08.27 Modal component spectrum diagram (a—Machine 1; b—Machine 2; c—Machine 3; d—Machine 4)
Energy ratio of vibration waveforms on different dates (a—2023.07.30 energy share bar; b—2023.08.27 energy share bar)
2023.07.30 Marginal spectrum of vibration waveform (a—Machine 1; b—Machine 2; c—Machine 3; d—Machine 4)
2023.08.27 Marginal spectrum of vibration waveform (a—Machine 1; b—Machine 2; c—Machine 3; d—Machine 4)
2023.09.23 Marginal spectrum of vibration waveform (a—Machine 1; b—Machine 2; c—Machine 3)
2023.07.30 Vibration energy three−dimensional diagram (a—Machine 1; b—Machine 2; c—Machine 3; d—Machine 4)
2023.08.27 Vibration energy three−dimensional diagram (a—Machine 1; b—Machine 2; c—Machine 3; d—Machine 4)
2023.09.23 Vibration energy three−dimensional diagram (a—Machine 1; b—Machine 2; c—Machine 3)