Citation: | ZHOU Yingchun, PENG Cheng, HUANG Rong, LI Guojie, JI Yushi. Experimental Study on Purification of a Quartz Placer in Wenchang of Hainan[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 73-80. doi: 10.13779/j.cnki.issn1001-0076.2023.08.004 |
In order to improve the quality of photovoltaic glass sand products in a quartz sand mine in Wenchang, Hainan. It used methods such as MLA and electron microscopy to identify the properties and occurrence states of minerals, and conducted purification experiments on quartz sand. The results of experimental show that the content of SiO2, Al2O3, Fe2O3, TiO2, and ZrO2 in the raw sand of quartz is 96.67%, 1.67%, 0.14%, 0.12%, and 0.01%, respectively.Harmful components mainly adhere to surfaces, fault and acid oil on quartz particles in the form of argillaceous and Ferruginous. After transforming the traditional process which consists of gravity concentration, magnetic separation and acid leaching into the new technology consists of scrubbing, grading, spiral gravity separation, wet magnetic separation, and alkali leaching. The experiment increased the recovery rate of SiO2 from 89.60% to 95.57%. The SiO2 increased from 99.42% to 99.74%, Al2O3 and Fe2O3 decreased from 0.18% and 0.04% to 0.05% and 0.008% in the products of quartz,which can meet the demand for raw materials of photovoltaic glass. The experiment purified the spiral heavy product to obtain zirconium titanium coarse concentrate that contains 5.18% ZrO2 and 23.78% TiO2. At the same time, Quartz tailings can be reprocessed into drying sand for casting or fracturing. This experiment has improved the recovery rate and added value of siliceous products.
[1] | 钟森林, 陈俊明, 张超达, 等. ZQS磁选机在光伏玻璃用石英砂厂中的应用[J]. 材料研究与应用, 2019, 13(2): 146−151. doi: 10.3969/j.issn.1673-9981.2019.02.013 ZHONG S L, CHEN J M, ZHANG C D, et al. Application of ZQS magnetic separator in silica sand plant for photovoltaic glass[J]. Materials Research And Application, 2019, 13(2): 146−151. doi: 10.3969/j.issn.1673-9981.2019.02.013 |
[2] | 郭文达, 韩跃新, 朱一民, 等. 高纯石英砂资源及加工技术分析[J]. 金属矿山, 2019, 48(2): 22−28. doi: 10.19614/j.cnki.jsks.201902004 GUO W D, HAN Y X, ZHU Y M, et al. Analysis of high-purity quartz sand resources and its processing technologies[J]. Metal Mine, 2019, 48(2): 22−28. doi: 10.19614/j.cnki.jsks.201902004 |
[3] | 钟森林, 谢宝华, 袁祥奕, 等. 东南亚某石英砂矿选矿试验研究[J]. 中国矿业, 2019, 28(S1): 259−262. ZHONG S L, XIE B H, YUAN X Y, et al. Study on the beneficiation test of silica sand in southeast Asia[J]. China Mining Magazine, 2019, 28(S1): 259−262. |
[4] | 彭寿, 吴建新, 谷翠红, 等. PPM级低铁石英砂的浮选技术及规模化生产实践[J]. 建材世界, 2010, 31(1): 49−52. doi: 10.3963/j.issn.1674-6066.2010.01.014 PENG S, WU J X, GU C H, et al. Flotation process and formalization production practice of PPM grade low iron quartz sand[J]. The World of Building Materials, 2010, 31(1): 49−52. doi: 10.3963/j.issn.1674-6066.2010.01.014 |
[5] | 陆玉, 邵辉, 王康, 等. 河北某石英矿工艺矿物学与提纯研究[J]. 非金属矿, 2021, 44(6): 56−58. doi: 10.3969/j.issn.1000-8098.2021.06.015 LU Y, SHAO H, WANG K, et al. Process mineralogy and purification of a quartz ore in Hebei province[J]. Non-Metallic Mines, 2021, 44(6): 56−58. doi: 10.3969/j.issn.1000-8098.2021.06.015 |
[6] | 张婷婷, 任东风, 侯军发, 等. 海相沉积型天然石英砂生产超白砂的工艺研究[J]. 建材世界, 2012, 33(4): 48−51. doi: 10.3963/j.issn.1674-6066.2012.04.015 ZHANG T T, REN D F, HOU J F, et al. Marine sedimentary natural quartz sand production technology of ultra white sand[J]. The World of Building Materials, 2012, 33(4): 48−51. doi: 10.3963/j.issn.1674-6066.2012.04.015 |
[7] | 王守敬, 邵伟华. 海滨石英砂矿物学研究—以海南文昌石英砂为例[J]. 矿产保护与利用, 2019, 39(6): 58−61. WANG S J, SHAO W H. Mineralogical study about seashore quartz sand ore—a case study from the seashore quartz sand ore at Wenchang, Hainan province[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 58−61. |
[8] | 贾德龙, 张万益, 陈丛林, 等. 高纯石英全球资源现状与我国发展建议[J]. 矿产保护与利用, 2019, 39(5): 112−117. doi: 10.13779/j.cnki.issn1001-0076.2019.05.011 JIA D L, ZHANG W Y, CHEN C L, et al. Global resource status and China's development suggestions of high purity quartz[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 112−117. doi: 10.13779/j.cnki.issn1001-0076.2019.05.011 |
[9] | 石钰, 张磊, 周东站, 等. 高纯石英砂的制备及应用研究进展[J]. 中国建材科技, 2019, 28(4): 73−75. SHI Y, ZHANG L, ZHOU D Z, et al. Study on preparation and application of higher purity quartz sand[J]. China Building Materials Science & Technology, 2019, 28(4): 73−75. |
[10] | 杨文, 周迎春, 侯军发, 等. 超白石英砂尾砂除钛和降细粒级砂的试验研究[J]. 非金属矿, 2020, 43(6): 64−66. doi: 10.3969/j.issn.1000-8098.2020.06.018 YANG W, ZHOU Y C, HOU J F, et al. Study on titanium removal and fine-grained sand reduction experiment of ultra white quartz sand tailing[J]. Non-Metallic Mines, 2020, 43(6): 64−66. doi: 10.3969/j.issn.1000-8098.2020.06.018 |
[11] | 谢恩俊, 林江平, 甘国超, 等. 高岭土尾矿制备光伏玻璃用低铁石英砂的提纯试验研究[J]. 建材世界, 2021, 42(3): 14−17. doi: 10.3963/j.issn.1674-6066.2021.03.005 XIE E J, LIN J P, GAN G C, et al. Experimental study on purification of low iron quartz sand for photovoltaic glass from kaolin tailings[J]. The World of Building Materials, 2021, 42(3): 14−17. doi: 10.3963/j.issn.1674-6066.2021.03.005 |
[12] | 彭程, 周迎春, 李国杰, 等. 海南文昌北部地区矿山地质特征及成因探析[J]. 中国金属通报, 2020(6): 65−66. doi: 10.3969/j.issn.1672-1667.2020.12.032 PENG C, ZHOU Y C, LI G J, et al. Geological characteristics and genesis of mines in the north of Wenchang, Hainan province[J]. China Metal Bulletin, 2020(6): 65−66. doi: 10.3969/j.issn.1672-1667.2020.12.032 |
[13] | 彭程, 周迎春, 李国杰, 等. 马拉维湖滨型钛铁砂矿选冶分离试验研究[J]. 矿冶工程, 2021, 41(4): 52−56. doi: 10.3969/j.issn.0253-6099.2021.04.013 PENG C, ZHOU Y C, LI G J, et al. Study on process mineralogy and separation and enrichment of lakeside ilmenite placer in Malawi[J]. Mining and Metallurgical Engineering, 2021, 41(4): 52−56. doi: 10.3969/j.issn.0253-6099.2021.04.013 |
[14] | 李宁, 姚建军. 莫桑比克某滨海锆钛砂矿工艺矿物学研究[J]. 现代矿业, 2022, 38(11): 114−116. doi: 10.3969/j.issn.1674-6082.2022.11.025 LI N, YAO J J. Study on process mineralogy of a coastal zirconium-titanium placer in mozambique[J]. Modern Mining, 2022, 38(11): 114−116. doi: 10.3969/j.issn.1674-6082.2022.11.025 |
[15] | 彭程, 周迎春, 李国杰, 等. 还原焙烧—磁选工艺回收马拉维某钛粗精矿中的钛和铁[J]. 矿产保护与利用, 2022, 42(1): 150−157. PENG C, ZHOU Y C, LI G J, et al. Recovery of titanium and iron from titanium rough concent ratein Malawi by reduction roasting-magnetic separation process[J]. Conservation and Utilization of Mineral Resource, 2022, 42(1): 150−157. |
[16] | 付标, 薛玉龙, 曾维特, 等. 海南岛东南部近岸表层沉积物锆、钛地球化学特征对浅海砂矿的指示[J]. 中国矿业, 2021, 30(S1): 208−216. doi: 10.12075/j.issn.1004-4051.2021.S1.097 FU B, XUE Y L, ZENG W T, et al. Geochemical characteristics of Zr and Ti in surface sediments indicate the shallow sea placers at southeast off-shore of Hainan island[J]. China Mining Magazine, 2021, 30(S1): 208−216. doi: 10.12075/j.issn.1004-4051.2021.S1.097 |
[17] | 宋家伟, 伍德明, 陈飞, 等. 海南岛东部浅海表层沉积物锆、钛地球化学特征及资源潜力分析[J]. 中国矿业, 2021, 30(S1): 217−221. doi: 10.12075/j.issn.1004-4051.2021.S1.101 SONG J W, WU D M, CHEN F, et al. Geochemical characteristics and resource potential of Zr and Ti in shallow sea surface sediments in the east of Hainan island[J]. China Mining Magazine, 2021, 30(S1): 217−221. doi: 10.12075/j.issn.1004-4051.2021.S1.101 |
[18] | 曹健, 陈小罗, 陈铮, 等. 海南省某砂质高岭土选矿试验研究[J]. 矿产保护与利用, 2013, 33(2): 44−49. doi: 10.3969/j.issn.1001-0076.2013.02.011 CAO J, CHEN X L, CHEN Z, et al. Beneficiation study on a sandy Kaolin from Hainan province[J]. Conservation and Utilization of Mineral Resource, 2013, 33(2): 44−49. doi: 10.3969/j.issn.1001-0076.2013.02.011 |
[19] | 尚德兴, 周新军, 张乾伟, 等. 高岭土尾矿制备光伏玻璃用低铁石英砂[J]. 金属矿山, 2019, 48(12): 188-191. SHANG D X, ZHOU X J, ZHANG Q W, et al. Preparation of low iron quartz sand for photovolatic glass from kaolin tailings[J]. Metal Mine. 2019, 48(12): 188-191. |
[20] | 吴飞达, 高惠民, 任子杰, 等. 合浦某高岭土尾砂的提纯与利用[J]. 非金属矿, 2019, 42(5): 62−66. doi: 10.3969/j.issn.1000-8098.2019.05.018 WU F D, GAO H M, REN Z J, et al. Purification and utilization of kaolin tailings in Hepu[J]. Non-Metallic Mines, 2019, 42(5): 62−66. doi: 10.3969/j.issn.1000-8098.2019.05.018 |
[21] | 豆中磊, 郑水林, 吴照洋. 海南某石英砂矿的选矿提纯试验研究[J]. 金属矿山, 2009, 38(1): 051−053. DOU Z L, ZHEN S L, WU Z Y. Study on concentration experiment of silica sand from Hainan province[J]. Metal Mine, 2009, 38(1): 051−053. |
[22] | 刘思, 高惠民, 胡廷海, 等. 北海某高岭土尾矿中石英砂的选矿提纯试验[J]. 金属矿山, 2013, 42(6): 161−164. doi: 10.3969/j.issn.1001-1250.2013.06.044 LIU S, GAO H M, HU T H, et al. Separation experiment of kaolin tailing quartz sand in Guangxi Beihai[J]. Non-Metallic Mines, 2013, 42(6): 161−164. doi: 10.3969/j.issn.1001-1250.2013.06.044 |
[23] | 李宇宏. 江西某石英砂精矿再除铁试验研究[J]. 矿冶工程, 2016, 36(2): 41−43. doi: 10.3969/j.issn.0253-6099.2016.02.011 LI Y H. Further reducing of iron content in quartz sand concentrate from Jiangxi with HGMS technique[J]. Mining and Metallurgical Engineering, 2016, 36(2): 41−43. doi: 10.3969/j.issn.0253-6099.2016.02.011 |
[24] | 刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺研究[J]. 矿产综合利用, 2020, 41(4): 111−115. doi: 10.3969/j.issn.1000-6532.2020.04.018 LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020, 41(4): 111−115. doi: 10.3969/j.issn.1000-6532.2020.04.018 |
Scrubbing and desliming test flow
Gravity concentration test flow of quartz sand after scrubbing
Test flow of scrubbing−gravity combined test
Supplementary test process for spiral light products
Repetitive gravity separation test process of spiral heavy product
Medium scrubbing test flow of sand for float glass
Deep processing process of quartz sand
Full process tests
Traditional process test flow of quartz sand