Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 6
Article Contents

ZHANG Lei, CHEN Hangchao, PAN Jinhe, HE Xin, MA Yujie, ZHAO Xindi, ZHOU Changchun, ZHANG Ningning. Research Progress on Occurrence Characteristics, Enrichment and Extraction of Coal−based Lithium and Rare Earth[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2023.06.001
Citation: ZHANG Lei, CHEN Hangchao, PAN Jinhe, HE Xin, MA Yujie, ZHAO Xindi, ZHOU Changchun, ZHANG Ningning. Research Progress on Occurrence Characteristics, Enrichment and Extraction of Coal−based Lithium and Rare Earth[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2023.06.001

Research Progress on Occurrence Characteristics, Enrichment and Extraction of Coal−based Lithium and Rare Earth

More Information
  • Lithium and rare earths as critical metals, are important industrial raw materials and play an irreplaceable role in promoting social and national security. With the development of economy, the contradiction of demand and support on lithium and rare earths has been intensifying. Coal−based lithium and rare earths reserves are abundant, of which the extraction and recovery has attracted widespread attention from countries around the world. Through a comprehensive analysis of the current research on coal−based lithium and rare earths at home and abroad, the progress on occurrence characteristics, beneficiation enrichment and chemical leaching of lithium and rare earths are systematically summarized, concluded and prospected. The challenges of their utilization contain unsatisfactory enrichment factors, high additives consumption, and high waste production of current technology. Thus, it is recommended to developed a physical−chemical combined method to directionally improve their grade, reducing the difficulty of subsequent chemical leaching. Furthermore, the research on the collaborative, green extraction other components in coal−based resources is promoted to achieve comprehensive utilization with high added value.

  • 加载中
  • [1] 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106−111.

    Google Scholar

    ZHAI M G, WU F Y, HU R Z, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106−111.

    Google Scholar

    [2] 侯增谦, 陈骏, 翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 2020, 65(33): 3651−3652. doi: 10.1360/TB-2020-1417

    CrossRef Google Scholar

    HOU Z Q, CHEN J, ZHAI M G. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 2020, 65(33): 3651−3652. doi: 10.1360/TB-2020-1417

    CrossRef Google Scholar

    [3] 王核, 黄亮, 白洪阳, 等. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 2022, 46(5): 848−866.

    Google Scholar

    WANG H, HUANG L, BAI H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 2022, 46(5): 848−866.

    Google Scholar

    [4] DOU S Q, XU D Y, ZHU Y G, et al. Critical mineral sustainable supply: Challenges and governance[J]. Futures, 2023, 146: 103101. doi: 10.1016/j.futures.2023.103101

    CrossRef Google Scholar

    [5] 李建武, 李天骄, 贾宏翔, 等. 中国战略性关键矿产目录厘定[J]. 地球学报, 2023, 44(2): 261−270.

    Google Scholar

    LI J W, LI T J, JIA H X, et al. Determination of China's strategic and critical minerals List[J]. Acta Geoscientica Sinica, 2023, 44(2): 261−270.

    Google Scholar

    [6] 王安建, 袁小晶. 大国竞争背景下的中国战略性关键矿产资源安全思考[J]. 中国科学院院刊, 2022, 37(11): 1550−1559.

    Google Scholar

    WANG A J, YUAN X J. Security of China's strategic and critical minerals under background of great power competition[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(11): 1550−1559.

    Google Scholar

    [7] SEREDIN V V, DAI S F. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology, 2012, 94: 67−93. doi: 10.1016/j.coal.2011.11.001

    CrossRef Google Scholar

    [8] 宁树正, 黄少青, 朱士飞, 等. 中国煤中金属元素成矿区带[J]. 科学通报, 2019, 64(24): 2501−2513. doi: 10.1360/N972019-00377

    CrossRef Google Scholar

    NING S Z, HUANG S Q, ZHU S F, et al. Mineralization zoning of coal−metal deposits in China[J]. Chinese Science Bulletin, 2019, 64(24): 2501−2513. doi: 10.1360/N972019-00377

    CrossRef Google Scholar

    [9] 代世峰, 赵蕾, 魏强, 等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112

    CrossRef Google Scholar

    DAI S F, ZHAO L, WEI Q, et al. Resources of critical metals in coal−bearing sequences in China: enrichment types and distribution[J]. Chinese Science Bulletin, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112

    CrossRef Google Scholar

    [10] DAI S F, FINKELMAN R B. Coal as a promising source of critical elements: progress and future prospects[J]. International Journal of Coal Geology, 2018, 186: 155−164. doi: 10.1016/j.coal.2017.06.005

    CrossRef Google Scholar

    [11] SUN B L, LIU Y X, TAJCMANOVA L, et al. In−situ analysis of the lithium occurrence in the No. 11 coal from the Antaibao mining district, Ningwu Coalfield, northern China[J]. Ore Geology Reviews, 2022, 144: 104825. doi: 10.1016/j.oregeorev.2022.104825

    CrossRef Google Scholar

    [12] JI B, LI Q, ZHANG W C. Rare earth elements (REEs) recovery from coal waste of the Western Kentucky No. 13 and Fire Clay Seams. Part I: Mineralogical characterization using SEM−EDS and TEM−EDS[J]. Fuel, 2022, 307: 121854. doi: 10.1016/j.fuel.2021.121854

    CrossRef Google Scholar

    [13] KETRIS M P, YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2): 135−148. doi: 10.1016/j.coal.2009.01.002

    CrossRef Google Scholar

    [14] DAI S F, REN D Y, CHOU C L, et al. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94: 3−21. doi: 10.1016/j.coal.2011.02.003

    CrossRef Google Scholar

    [15] 宁树正, 邓小利, 李聪聪, 等. 中国煤中金属元素矿产资源研究现状与展望[J]. 煤炭学报, 2017, 42(9): 2214−2225.

    Google Scholar

    NING S Z, DENG X L, LI C C, et al. Research status and prospect of metal element mineral resources in China[J]. Journal of China Coal Society, 2017, 42(9): 2214−2225.

    Google Scholar

    [16] QIN S J, ZHAO C L, LI Y H, et al. Review of coal as a promising source of lithium[J]. International Journal of Oil Gas and Coal Technology, 2015, 9(2): 215−229. doi: 10.1504/IJOGCT.2015.067490

    CrossRef Google Scholar

    [17] DAI S F, LI D, CHOU C L, et al. Mineralogy and geochemistry of boehmite−rich coals: new insights from the haerwusu surface mine, jungar coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 2008, 74(3/4): 185−202. doi: 10.1016/j.coal.2008.01.001

    CrossRef Google Scholar

    [18] DAI S F, JIANG Y F, WARD C R, et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield[J]. International Journal of Coal Geology, 2012, 98: 10−40. doi: 10.1016/j.coal.2012.03.003

    CrossRef Google Scholar

    [19] 衣姝, 王金喜. 安家岭矿9号煤中锂的赋存状态和富集因素分析[J]. 煤炭与化工, 2014, 37(9): 7−10.

    Google Scholar

    YI S, WANG J X. Lithium occurrences and enrichment factor law in No. 9 coal seam of Anjialing mine[J]. Coal and Chemical Industry, 2014, 37(9): 7−10.

    Google Scholar

    [20] ZHOU M X, ZHAO L, WANG X B, et al. Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium[J]. Ore Geology Reviews, 2021, 139: 104582. doi: 10.1016/j.oregeorev.2021.104582

    CrossRef Google Scholar

    [21] DAI S F, REN D Y, TANG Y G, et al. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China[J]. International Journal of Coal Geology, 2005, 61(1/2): 119−137. doi: 10.1016/j.coal.2004.07.003

    CrossRef Google Scholar

    [22] 宋杨. 贵州普安某高硫煤脱硫降灰试验研究[D]. 贵阳: 贵州大学, 2020.

    Google Scholar

    SONG Y. Study on desulfurization and ash reduction of a high sulfur coal in Pu'an of Guizhou Provine[D]. Guiyang: Guizhou University, 2020.

    Google Scholar

    [23] DU F P, NING S Z, QIAO J W, et al. Geochemical and mineralogical characteristics of the Li−Sr−enriched coal in the Wenjiaba mine, Guizhou, SW China[J]. ACS Omega, 2021, 6(13): 8816−8828. doi: 10.1021/acsomega.0c05663

    CrossRef Google Scholar

    [24] 刘云霞. 山西省典型矿区煤及煤灰中锂镓赋存状态与转化机制[D]. 太原: 太原理工大学, 2022.

    Google Scholar

    LIU Y X. Occurrence and transformation of lithium and gallium in coal and coal ash from typical mining areas of Shanxi Provine[D]. Taiyuan: Taiyuan University of Technology, 2022.

    Google Scholar

    [25] 赵蕾, 王西勃, 代世峰. 煤系中的锂矿产: 赋存分布、成矿与资源潜力[J]. 煤炭学报, 2022, 47(5): 1750−1760.

    Google Scholar

    ZHAO L, WANG X B, DAI S F. Lithium resources in coal−bearing strata: Occurrence, mineralization, and resource potential[J]. Journal of China Coal Society, 2022, 47(5): 1750−1760.

    Google Scholar

    [26] 程晨, 宋杨, 臧静坤, 等. 贵州普安矿区20号煤中锂的赋存状态及逐级化学提取实验研究[J]. 煤田地质与勘探, 2022, 50(10): 44−53.

    Google Scholar

    CHENG C, SONG Y, ZANG J K, et al. Occurrence modes and stepwise chemical extraction experiment of lithium in No. 20 coal seam in Pu'an mining area, Guizhou Province[J]. Coal Geology & Exploration, 2022, 50(10): 44−53.

    Google Scholar

    [27] 朱士飞, 曹泊, 吴国强, 等. 广西上林万福矿区煤中锂、镓和稀土元素逐级提取实验研究[J]. 中国煤炭地质, 2021, 33(9): 38−41.

    Google Scholar

    ZHU S F, CAO B, WU G Q, et al. Experimental study of coal lithium, gallium and REE stepwise extraction in Wanfu mine area, Shanglin, Guangxi[J]. Coal Geology of China, 2021, 33(9): 38−41.

    Google Scholar

    [28] ZHANG W C, HONAKER R. Characterization and recovery of rare earth elements and other critical metals (Co, Cr, Li, Mn, Sr, and V) from the calcination products of a coal refuse sample[J]. Fuel, 2020, 267: 117236. doi: 10.1016/j.fuel.2020.117236

    CrossRef Google Scholar

    [29] ZHANG W C, NOBLE A, YANG X B, et al. Lithium leaching recovery and mechanisms from density fractions of an Illinois Basin bituminous coal[J]. Fuel, 2020, 268: 117319. doi: 10.1016/j.fuel.2020.117319

    CrossRef Google Scholar

    [30] HU P P, HOU X J, ZHANG J B, et al. Distribution and occurrence of lithium in high−alumina−coal fly ash[J]. International Journal of Coal Geology, 2018, 189: 27−34. doi: 10.1016/j.coal.2018.02.011

    CrossRef Google Scholar

    [31] 徐飞. 燃煤过程中关键元素的赋存特征及迁移转化规律[D]. 邯郸: 河北工程大学, 2021.

    Google Scholar

    XU F. Occurrence characteristics, migration and transformation of critical elements during coal combustion[D]. Handan: Hebei University of Engineering, 2021.

    Google Scholar

    [32] 曹泊, 朱士飞, 秦云虎, 等. 煤中稀土元素研究现状及展望[J]. 煤炭科学技术, 2022, 50(4): 181−194.

    Google Scholar

    CAO B, ZHU S F, QIN Y H, et al. Research status and prospect of rare earth elements in coal[J]. Coal Science and Technology, 2022, 50(4): 181−194.

    Google Scholar

    [33] 秦身钧, 徐飞, 崔莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1−38.

    Google Scholar

    QIN S J, XU F, CUI L, et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal−related resources[J]. Coal Science and Technology, 2022, 50(3): 1−38.

    Google Scholar

    [34] 刘大锐, 高桂梅, 池君洲, 等. 准格尔煤田黑岱沟露天矿煤中稀土及微量元素的分配规律[J]. 地质学报, 2018, 92(11): 2368−2375.

    Google Scholar

    LIU D R, GAO G M, CHI J Z, et al. Distribution rule of rare earth and trace elements in the Heidaigou openpit coal mine in the Junggar coal field[J]. Acta Geologica Sinica, 2018, 92(11): 2368−2375.

    Google Scholar

    [35] 刘蔚阳, 樊景森, 王金喜, 等. 宁武煤田煤中稀土元素地球化学特征研究[J]. 煤炭科学技术, 2020, 48(4): 237−245.

    Google Scholar

    LIU Y Y, FAN J S, WANG J X, et al. Study on geochemical characteristics of rare earth elements from coal in Ningwu Coalfield[J]. Coal Science and Technology, 2020, 48(4): 237−245.

    Google Scholar

    [36] DAI S F, ZHOU Y P, REN D Y, et al. Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China[J]. Science in China Series D:Earth Sciences, 2007, 50(5): 678−688. doi: 10.1007/s11430-007-0001-4

    CrossRef Google Scholar

    [37] DAI S F, XIE P P, JIA S H, et al. Enrichment of U−Re−V−Cr−Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews, 2017, 80: 1−17. doi: 10.1016/j.oregeorev.2016.06.015

    CrossRef Google Scholar

    [38] ZHANG W C, NOBLE A. Mineralogy characterization and recovery of rare earth elements from the roof and floor materials of the Guxu coalfield[J]. Fuel, 2020, 270: 117533. doi: 10.1016/j.fuel.2020.117533

    CrossRef Google Scholar

    [39] YANG B, CHENG C, LI Y X, et al. Modes of occurrence and pre−concentration of rare earth elements in No. 17 coal in Liupanshui coalfield, China[J]. Journal of Rare Earths, 2022, 40(8): 1323−1332. doi: 10.1016/j.jre.2021.09.001

    CrossRef Google Scholar

    [40] YU C L, MU N N, HUANG W H, et al. Major and rare earth element characteristics of Late Paleozoic coal in the southeastern Qinshui basin: Implications for depositional environments and provenance[J]. ACS Omega, 2022, 7(35): 30856−30878. doi: 10.1021/acsomega.2c02596

    CrossRef Google Scholar

    [41] HOWER J C, GROPPO J G, HENKE K R, et al. Notes on the potential for the concentration of rare earth elements and yttrium in coal combustion fly ash[J]. Minerals, 2015, 5(2): 356−366. doi: 10.3390/min5020356

    CrossRef Google Scholar

    [42] DAI S F, ZHAO L, HOWER J C, et al. Petrology, mineralogy, and chemistry of size−fractioned fly ash from the Jungar power plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements[J]. Energy & Fuels, 2014, 28(2): 1502−1514.

    Google Scholar

    [43] SMOLKA−DANIELOWSKA D. Rare earth elements in fly ashes created during the coal burning process in certain coal−fired power plants operating in Poland – Upper Silesian Industrial Region[J]. Journal of Environmental Radioactivity, 2010, 101(11): 965−968. doi: 10.1016/j.jenvrad.2010.07.001

    CrossRef Google Scholar

    [44] KOLKER A, SCOTT C, HOWER J C, et al. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP−RG ion microprobe[J]. International Journal of Coal Geology, 2017, 184: 1−10. doi: 10.1016/j.coal.2017.10.002

    CrossRef Google Scholar

    [45] 潘金禾. 粉煤灰中稀土元素赋存机制及富集提取研究[D]. 徐州: 中国矿业大学, 2021.

    Google Scholar

    PAN J H. Study on the enrichment, extraction, and mechanism of occurrence of rare earth elements in coal fly ash[D]. Xuzhou: China University of Mining and Technology, 2021.

    Google Scholar

    [46] 李梦闪, 黄伟欣, 张臻悦, 等. 煤及其副产物中稀土元素的赋存特征与选矿富集研究进展[J]. 有色金属(选矿部分), 2021(6): 61−81.

    Google Scholar

    LI M S, HUANG W X, ZHANG Z Y, et al. A review on occurrence characteristics and beneficiation enrichments of rare earth elements in coal and its by−products[J]. Nonferrous Metals (Mineral Processing Section), 2021(6): 61−81.

    Google Scholar

    [47] 刘建婧. 平朔煤中矿物质及微量元素镓、锂分布规律研究[D]. 太原: 太原理工大学, 2019.

    Google Scholar

    LIU J J. Distribution of minerals and trace elements gallium and lithium in Pingshuo coal[D]. Taiyuan: Taiyuan University of Technology, 2019.

    Google Scholar

    [48] CHENG W, YANG R D, ZHANG Q, et al. Washability and distribution behaviors of trace elements of a high−sulfur coal, SW Guizhou, China[J]. Minerals, 2018, 8(2): 59. doi: 10.3390/min8020059

    CrossRef Google Scholar

    [49] 张森. 煤中微量有价元素赋存状态及迁移规律研究[D]. 太原: 山西大学, 2019.

    Google Scholar

    ZHANG S. Study on the modes of occurrence and volatility of trace valuable elements in coals[D]. Taiyuan: Shanxi University, 2019.

    Google Scholar

    [50] 宋杨, 杨欢欢, 程伟. 黔西南某中高硫煤脱硫过程中微量元素的分配特性研究[J]. 矿冶工程, 2020, 40(4): 45−48.

    Google Scholar

    SONG Y, YANG H H, CHENG W. Distribution of trace elements amid desulfurization of medium−high sulfur coal in southwestern Guizhou[J]. Mining and Metallurgical Engineering, 2020, 40(4): 45−48.

    Google Scholar

    [51] 张磊. 煤系锂、镓和稀土的洗选分布规律及焙烧浸出研究[D]. 徐州: 中国矿业大学, 2023.

    Google Scholar

    ZHANG L. Study on washing distribution laws and roasting leaching of coal−based lithium, gallium and rare earth elements[D]. Xuzhou: China University of Mining and Technology, 2023.

    Google Scholar

    [52] ZHANG L, CHEN H C, PAN J H, et al. The effect of physical separation and calcination on enrichment and recovery of critical elements from coal gangue[J]. Minerals, 2022, 12(11): 1371. doi: 10.3390/min12111371

    CrossRef Google Scholar

    [53] MA Z B, SHAN X Y, CHENG F Q. Distribution characteristics of valuable elements, Al, Li, and Ga, and rare earth elements in feed coal, fly ash, and bottom ash from a 300 MW circulating fluidized bed boiler[J]. ACS Omega, 2019, 4(4): 6854−6863. doi: 10.1021/acsomega.9b00280

    CrossRef Google Scholar

    [54] XU F, QIN S J, LI S Y, et al. Distribution, occurrence mode, and extraction potential of critical elements in coal ashes of the Chongqing Power Plant[J]. Journal of Cleaner Production, 2022, 342: 130910. doi: 10.1016/j.jclepro.2022.130910

    CrossRef Google Scholar

    [55] ZHOU C C, LI C, LI W W, et al. Distribution and preconcentration of critical elements from coal fly ash by integrated physical separations[J]. International Journal of Coal Geology, 2022, 261: 104095. doi: 10.1016/j.coal.2022.104095

    CrossRef Google Scholar

    [56] LI C, ZHOU C C, LI W W, et al. Enrichment of critical elements from coal fly ash by the combination of physical separations[J]. Fuel, 2023, 336: 127156. doi: 10.1016/j.fuel.2022.127156

    CrossRef Google Scholar

    [57] LANZERSTORFER C. Pre−processing of coal combustion fly ash by classification for enrichment of rare earth elements[J]. Energy Reports, 2018, 4: 660−663. doi: 10.1016/j.egyr.2018.10.010

    CrossRef Google Scholar

    [58] GONG Y B, SUN J M, ZHANG Y M, et al. Dependence on the distribution of valuable elements and chemical characterizations based on different particle sizes of high alumina fly ash[J]. Fuel, 2021, 291: 120225. doi: 10.1016/j.fuel.2021.120225

    CrossRef Google Scholar

    [59] PAN J H, ZHOU C C, TANG M C, et al. Study on the modes of occurrence of rare earth elements in coal fly ash by statistics and a sequential chemical extraction procedure[J]. Fuel, 2019, 237: 555−565. doi: 10.1016/j.fuel.2018.09.139

    CrossRef Google Scholar

    [60] CHENG W, ZHANG Q, YANG R D, et al. Occurrence modes and cleaning potential of sulfur and some trace elements in a high−sulfur coal from Pu’an coalfield, SW Guizhou, China[J]. Environmental Earth Sciences, 2014, 72(1): 35−46. doi: 10.1007/s12665-013-2934-6

    CrossRef Google Scholar

    [61] CHEN H C, ZHANG L, PAN J H, et al. Study on modes of occurrence and enhanced leaching of critical metals (lithium, niobium, and rare earth elements) in coal gangue[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108818. doi: 10.1016/j.jece.2022.108818

    CrossRef Google Scholar

    [62] LIN R H, HOWARD B H, ROTH E A, et al. Enrichment of rare earth elements from coal and coal by−products by physical separations[J]. Fuel, 2017, 200: 506−520. doi: 10.1016/j.fuel.2017.03.096

    CrossRef Google Scholar

    [63] HONAKER R, GROPPO J, BHAGAVATULA A, et al. Recovery of rare earth minerals and elements from coal and coal byproducts: Coal Prep 2016[C], 2016.

    Google Scholar

    [64] ZHANG W, HONAKER R, GROPPO J. Concentration of rare earth minerals from coal by froth flotation[J]. Minerals & Metallurgical Processing, 2017, 34(3): 132−137.

    Google Scholar

    [65] ZHANG W C, YANG X B, HONAKER R Q. Association characteristic study and preliminary recovery investigation of rare earth elements from Fire Clay seam coal middlings[J]. Fuel, 2018, 215: 551−560. doi: 10.1016/j.fuel.2017.11.075

    CrossRef Google Scholar

    [66] WEN Z P, CHEN H C, PAN J H, et al. Grinding activation effect on the flotation recovery of unburned carbon and leachability of rare earth elements in coal fly ash[J]. Powder Technology, 2022, 398: 117045. doi: 10.1016/j.powtec.2021.117045

    CrossRef Google Scholar

    [67] 潘金禾, 周长春, 温智平, 等. 四川某地粉煤灰中稀土元素的富集回收[J]. 中国矿业大学学报, 2022, 51(5): 998−1006.

    Google Scholar

    PAN J H, ZHOU C C, WEN Z P, et al. Recovery of rare earth elements in coal fly ash from Sichuan Province[J]. Journal of China University of Mining & Technology, 2022, 51(5): 998−1006.

    Google Scholar

    [68] PAN J H, NIE T C, HASSAS B V, et al. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching[J]. Chemosphere, 2020, 248: 126112. doi: 10.1016/j.chemosphere.2020.126112

    CrossRef Google Scholar

    [69] ROSITA W, BENDIYASA I M, PERDANA I, et al. Sequential particle−size and magnetic separation for enrichment of rare−earth elements and yttrium in Indonesia coal fly ash[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103575. doi: 10.1016/j.jece.2019.103575

    CrossRef Google Scholar

    [70] HOWER J C, GROPPO J G, JOSHI P, et al. Distribution of lanthanides, yttrium, and scandium in the pilot−scale beneficiation of fly ashes derived from eastern Kentucky coals[J]. Minerals, 2020, 10(2): 105. doi: 10.3390/min10020105

    CrossRef Google Scholar

    [71] ZHANG W C, HONAKER R. Calcination pretreatment effects on acid leaching characteristics of rare earth elements from middlings and coarse refuse material associated with a bituminous coal source[J]. Fuel, 2019, 249: 130−145. doi: 10.1016/j.fuel.2019.03.063

    CrossRef Google Scholar

    [72] ZHANG W C, REZAEE M, BHAGAVATULA A, et al. A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by−products[J]. International Journal of Coal Preparation and Utilization, 2015, 35(6): 295−330. doi: 10.1080/19392699.2015.1033097

    CrossRef Google Scholar

    [73] 王梓硕, 臧静坤, 王小蕊, 等. 用氧化焙烧—盐酸浸出工艺从煤矸石中提取锂试验研究[J]. 湿法冶金, 2023, 42(6): 574−581.

    Google Scholar

    WANG Z S, ZANG J K, WANG X R, et al. Extraction of lithium from coal gangue by oxidation roasting−hydrochloric acid leaching process[J]. Hydrometallurgy of China, 2023, 42(6): 574−581.

    Google Scholar

    [74] 聂天成. 焙烧活化对煤矸石中稀土元素的赋存及浸出影响研究[D]. 徐州: 中国矿业大学, 2021.

    Google Scholar

    NIE T C. Study on the effect of roasting activation on the occurrence and leaching of rare earth elements in coal refuse[D]. Xuzhou: China University of Mining and Technology, 2021.

    Google Scholar

    [75] 赵泽森, 高建明, 郭彦霞, 等. 不同活化条件下粉煤灰中锂的酸碱溶出特性[J]. 环境科学研究, 2018, 31(3): 569−576.

    Google Scholar

    ZHAO Z S, GAO J M, GUO Y X, et al. Acid−alkali dissolution characteristics of lithium in fly ash under different activation conditions[J]. Research of Environmental Sciences, 2018, 31(3): 569−576.

    Google Scholar

    [76] TAGGART R K, HOWER J C, DWYER G S, et al. Trends in the rare earth element content of U. S.−Based coal combustion fly ashes[J]. Environmental Science & Technology, 2016, 50(11): 5919−5926.

    Google Scholar

    [77] TALAN D, HUANG Q Q. A review study of rare earth, cobalt, lithium, and manganese in coal−based sources and process development for their recovery[J]. Minerals Engineering, 2022, 189: 107897. doi: 10.1016/j.mineng.2022.107897

    CrossRef Google Scholar

    [78] SHAO S, MA B Z, WANG C Y, et al. Extraction of valuable components from coal gangue through thermal activation and HNO3 leaching[J]. Journal of Industrial and Engineering Chemistry, 2022, 113: 564−574. doi: 10.1016/j.jiec.2022.06.033

    CrossRef Google Scholar

    [79] ZHANG L, CHEN H C, PAN J H, et al. Extraction of lithium from coal gangue by a roasting−leaching process[J]. International Journal of Coal Preparation and Utilization, 2023, 43(5): 863−878. doi: 10.1080/19392699.2022.2083611

    CrossRef Google Scholar

    [80] PAN J H, NIE T C, ZHOU C C, et al. The effect of calcination on the occurrence and leaching of rare earth elements in coal refuse[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108355. doi: 10.1016/j.jece.2022.108355

    CrossRef Google Scholar

    [81] HONAKER R Q, ZHANG W, WERNER J. Acid leaching of rare earth elements from coal and coal ash: Implications for using fluidized bed combustion to assist in the recovery of critical materials[J]. Energy & Fuels, 2019, 33(7): 5971−5980.

    Google Scholar

    [82] PAN J H, LONG X, ZHANG L, et al. The discrepancy between coal ash from muffle, circulating fluidized bed (CFB), and pulverized coal (PC) furnaces, with a focus on the recovery of iron and rare earth elements[J]. Materials, 2022, 15(23): 8494. doi: 10.3390/ma15238494

    CrossRef Google Scholar

    [83] XU H Q, LIU C L, MI X, et al. Extraction of lithium from coal fly ash by low−temperature ammonium fluoride activation−assisted leaching[J]. Separation and Purification Technology, 2021, 279: 119757. doi: 10.1016/j.seppur.2021.119757

    CrossRef Google Scholar

    [84] 汤梦成. 碱熔−酸浸提取粉煤灰中稀土元素研究[D]. 徐州: 中国矿业大学, 2019.

    Google Scholar

    TANG M C. Study on extraction of rare earth elements from coal fly ash by alkali fusion−acid leaching[D]. Xuzhou: China University of Mining and Technology, 2019.

    Google Scholar

    [85] QIN Q Z, DENG J S, GENG H H, et al. An exploratory study on strategic metal recovery of coal gangue and sustainable utilization potential of recovery residue[J]. Journal of Cleaner Production, 2022, 340: 130765. doi: 10.1016/j.jclepro.2022.130765

    CrossRef Google Scholar

    [86] 成俊伟, 任卫国, 王建成, 等. 吸附法提取煤矸石中锂的工艺[J]. 化工进展, 2019, 38(8): 3589−3595.

    Google Scholar

    CHENG J W, REN W G, WANG J C, et al. Extraction of lithium from coal gangue by manganese ion sieve adsorption[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3589−3595.

    Google Scholar

    [87] NAWAB A, YANG X B, HONAKER R. An acid baking approach to enhance heavy rare earth recovery from bituminous coal−based sources[J]. Minerals Engineering, 2022, 184: 107610. doi: 10.1016/j.mineng.2022.107610

    CrossRef Google Scholar

    [88] 郭昭华. 粉煤灰“一步酸溶法”提取氧化铝工艺技术及工业化发展研究[J]. 煤炭工程, 2015, 47(7): 5−8. doi: 10.11799/ce201507002

    CrossRef Google Scholar

    GUO Z H. Study and industrialization development of one−step acid dissolution technology for alumina extraction from fly ash[J]. Coal Engineering, 2015, 47(7): 5−8. doi: 10.11799/ce201507002

    CrossRef Google Scholar

    [89] 邵爽. 煤矸石热活化与硝酸浸出铝镓锂的基础研究[D]. 北京: 北京科技大学, 2023.

    Google Scholar

    SHAO S. Basic research on thermal activation and HNO3 leaching of coal gangue to extract Al/Ga/Li[D]. Beijing: University of Science and Technology Beijing, 2023.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(610) PDF downloads(25) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint