Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 5
Article Contents

ZHANG Li, WANG Changfu. Research Progress on Separation Technology and Comprehensive Utilization of Vanadium−titanium Magnetite Resources[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 127-137. doi: 10.13779/j.cnki.issn1001-0076.2023.05.014
Citation: ZHANG Li, WANG Changfu. Research Progress on Separation Technology and Comprehensive Utilization of Vanadium−titanium Magnetite Resources[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 127-137. doi: 10.13779/j.cnki.issn1001-0076.2023.05.014

Research Progress on Separation Technology and Comprehensive Utilization of Vanadium−titanium Magnetite Resources

  • Vanadium−titanium magnetite resource is a composite mineral resource with iron, vanadium, and titanium as the main metals, and usually accompanied by phosphorus, copper, cobalt, nickel, chromium, scandium, (rare) precious metal elements, and other valuable components, which have very high-value comprehensive utilization. To effectively develop and utilize the vanadium−titanium magnetite resources, this paper introduces the research progress of separation technology and comprehensive utilization of vanadium−titanium magnetite resources from three directions: pre−discarding tailings, beneficiation technology, and comprehensive utilization of vanadium−titanium magnetite concentrate and vanadium−titanium magnetite tailings. The research focus on the development of vanadium−titanium magnetite resources is summarized and prospected.

  • 加载中
  • [1] 王勋, 韩跃新, 李艳军, 等. 钒钛磁铁矿综合利用研究现状[J]. 金属矿山, 2019(6): 33−37. doi: 10.19614/j.cnki.jsks.201906006

    CrossRef Google Scholar

    WANG X, HAN Y X, LI Y J. et al. Research status on comprehensive development and utilization of vanadium−titanium magnetite[J]. Metal Mine, 2019(6): 33−37. doi: 10.19614/j.cnki.jsks.201906006

    CrossRef Google Scholar

    [2] GUO Y, LIU K, CHEN F, et al. Effect of high−pressure grinding rolls pretreatment on the preparation of vanadium−titanium magnetite pellets[J]. Journal of Materials Research and Technology, 2023, 23: 2479−2490. doi: 10.1016/j.jmrt.2023.01.125

    CrossRef Google Scholar

    [3] 秦文杰. 陕南钒钛磁铁矿开发利用的思考[J]. 陕西煤炭, 2023, 42(3): 204−208. doi: 10.3969/j.issn.1671-749X.2023.03.043

    CrossRef Google Scholar

    QIN W J. Reflections on the development and utilization of vanadium titanomagnetite in southern Shaanxi[J]. Shaanxi Coal, 2023, 42(3): 204−208. doi: 10.3969/j.issn.1671-749X.2023.03.043

    CrossRef Google Scholar

    [4] 彭英健, 吕超. 钒钛磁铁矿综合利用现状及进展[J]. 矿业研究与开发, 2019, 39(5): 130−135. doi: 10.13827/j.cnki.kyyk.2019.05.027

    CrossRef Google Scholar

    PENG Y J, LV C. Comprehensive utilization status and progress of vanadium−titanium magnetite[J]. Mining Research and Development, 2019, 39(5): 130−135. doi: 10.13827/j.cnki.kyyk.2019.05.027

    CrossRef Google Scholar

    [5] MOSKALYK R R, ALFANTAZI A M. Processing of vanadium: a review[J]. Minerals Engineering, 2003, 16(9): 793−805. doi: 10.1016/S0892-6875(03)00213-9

    CrossRef Google Scholar

    [6] TANG Q, GAN C, YANG J, et al. Dynamics of vanadium and response of inherent bacterial communities in vanadium–titanium magnetite tailings to beneficiation agents, temperature, and illumination[J]. Environmental Pollution, 2023, 330: 121743. doi: 10.1016/j.envpol.2023.121743

    CrossRef Google Scholar

    [7] YU J, HU N, XIAO H, et al. Reduction behaviors of vanadium-titanium magnetite with H2 via a fluidized bed[J]. Powder Technology, 2021, 385: 83−91. doi: 10.1016/j.powtec.2021.02.038

    CrossRef Google Scholar

    [8] 温孝进. 钒钛磁铁矿精矿碳热还原制备氮化钛和还原铁基础研究[D]. 赣州: 江西理工大学, 2022.

    Google Scholar

    WEN X J. Fundamental research on the preparation of titanium nitride and direct reduced iron by carbothermal reduction of vanadium titanium magnetite concentrate [D]. Ganzhou: Jiangxi University of Science and Tecnology, 2022.

    Google Scholar

    [9] 郭小飞. 攀西钒钛磁铁矿超细碎及铁钛平行分选技术研究[D]. 沈阳: 东北大学, 2013.

    Google Scholar

    GUO X F. Technology research on ultra−finely crushing and parallel separating Fe−Ti of vanadium−titanium magnetite in Panxi[D]. Shanyang: Northeastern University, 2013.

    Google Scholar

    [10] 曹玉川. 攀西某低品位钒钛磁铁矿选铁工艺研究[J]. 钢铁钒钛, 2023, 44(3): 114−117.

    Google Scholar

    CAO Y C. Experimental study on iron concentrate separation from a low−grade vanadium−titanium magnetite in Panxi area[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 114−117.

    Google Scholar

    [11] 王勇, 孙亚明. 攀枝花钒钛磁铁矿选择性磨矿性能试验研究[J]. 矿业研究与开发, 2020, 40(11): 4.

    Google Scholar

    WANG Y, SUN Y M. Experimental study on selective binding performance in vanadium−titanium magnetite ore in Panzhihua[J]. Mining Research and Development, 2020, 40(11): 4.

    Google Scholar

    [12] 李仁敏. 复合焙烧添加剂强化钒钛磁铁矿直接提钒的工艺及机理研究[D]. 武汉: 武汉科技大学, 2019.

    Google Scholar

    LI R M. Study on the process and mechanism of composite roasting additive for strengthening direct vanadium extraction from vanadium−titanium magnetite[D]. Wuhan: Wuhan University of Science and Technology, 2019.

    Google Scholar

    [13] 陈海彬, 周振华, 张作金, 等. 钒钛磁铁矿综合回收研究进展[J]. 现代矿业, 2023, 39(1): 7−9.

    Google Scholar

    CHEN H B, ZHOU Z H, ZHANG Z J, Research progress in the comprehensive recovery of vanadium−titanium magnetite[J]. Modern Mining, 2023, 39(1): 7−9.

    Google Scholar

    [14] 郑析科. 攀西地区钒钛磁铁矿中伴生钴的富集规律[D]. 成都: 成都理工大学, 2019.

    Google Scholar

    ZHENG X K. Enrichment characteristics of associated cobalt in vanadium titanium magnetite Panxi area[D]. Chengdu: Chengdu University of Technology, 2019.

    Google Scholar

    [15] 梁效, 牛芳银, 王勇海, 等. 钒钛磁铁矿尾矿中钪的直接酸浸试验研究[J]. 稀有金属与硬质合金, 2023, 51(1): 5−9,16.

    Google Scholar

    LIANG X, NIU F Y, WANG Y H, et al. Experimental study on direct acid leaching of scandium from V−Ti magnetite tailings[J]. Rare Metals and Cemented Carbides, 2023, 51(1): 5−9,16.

    Google Scholar

    [16] 薛忠言. 低品位钒钛磁铁矿预选抛尾工艺试验[J]. 现代矿业, 2012(7): 103−105. doi: 10.3969/j.issn.1674-6082.2012.07.031

    CrossRef Google Scholar

    XUE Z Y. Experiment on pre−concentration and tailings discarding process of low−grade vanadium−titanium magnetite[J]. Modern Mining, 2012(7): 103−105. doi: 10.3969/j.issn.1674-6082.2012.07.031

    CrossRef Google Scholar

    [17] 贾雪梅, 宫亮. 重磁拉磁选机在某钒钛磁铁矿粗粒抛尾中的工业应用[J]. 现代矿业, 2019(6): 23−26+33. doi: 10.3969/j.issn.1674-6082.2019.06.007

    CrossRef Google Scholar

    JIA X M, GONG L. Industrial application of heavy magnetic drawing magnetic separator in coarse−grained tailings of a vanadium−titanium magnetite[J]. Modern Mining, 2019(6): 23−26+33. doi: 10.3969/j.issn.1674-6082.2019.06.007

    CrossRef Google Scholar

    [18] 王建平. ZCLA选矿机在攀枝花钒钛磁铁矿预选抛尾中的应用[J]. 矿冶工程, 2016, 36(3): 47−50. doi: 10.3969/j.issn.0253-6099.2016.03.012

    CrossRef Google Scholar

    WANG J P. Application of ZCLA concentrator for preconcentration and tailings discarding of vanadium titanium magnetite in panzhihua[J]. Mining and Metallurgical Engineering, 2016, 36(3): 47−50. doi: 10.3969/j.issn.0253-6099.2016.03.012

    CrossRef Google Scholar

    [19] 胡永会. 攀西钒钛磁铁矿大块干式磁选技术应用实践[J]. 现代矿业, 2017, 33(7): 45−49. doi: 10.3969/j.issn.1674-6082.2017.07.012

    CrossRef Google Scholar

    HU Y H. Dry magnetic separation technique of lump vanadium−titanium magnetite ore in Panxi region[J]. Modern Mining, 2017, 33(7): 45−49. doi: 10.3969/j.issn.1674-6082.2017.07.012

    CrossRef Google Scholar

    [20] 成磊, 尚红亮, 朱道瑶. 外磁式磁选机应用于铁矿预选抛尾工艺的试验研究[J]. 有色金属(选矿部分), 2019(3): 78−80.

    Google Scholar

    CHENG L, SHANG H L, ZHU D Y. Experimental study on the application of external magnetic separator in iron ore preconcentration tailing process[J]. Nonferrous Metals (Mineral Processing Section), 2019(3): 78−80.

    Google Scholar

    [21] LUO X, HE K, ZHANG Y, et al. A review of intelligent ore sorting technology and equipment development[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(9): 1647−1655. doi: 10.1007/s12613-022-2477-5

    CrossRef Google Scholar

    [22] 边振忠. 钒钛磁铁矿精矿铵盐焙烧回收有价金属的研究[D]. 北京: 北京科技大学, 2022.

    Google Scholar

    BIAN Z Z. Recovery of valueable metals from vanadium titanomagnetite concentrate by ammonium salt roasting[D]. Beijing: University of Science and Technology Beijing, 2022.

    Google Scholar

    [23] HAN Y, KIM S, GO B, et al. Optimized magnetic separation for efficient recovery of V and Ti enriched concentrates from vanadium−titanium magnetite ore: Effect of grinding and magnetic intensity[J]. Powder Technology, 2021, 391: 282−291. doi: 10.1016/j.powtec.2021.06.024

    CrossRef Google Scholar

    [24] 李小辉. 钒钛磁铁矿精矿直接还原回收铁同步生成钛酸钙的研究[D]. 北京: 北京科技大学, 2021.

    Google Scholar

    LI X H. Study on recovering iron and simultaneous forming calcium titanate by direct reduction from vanadium titanomagnetite concentrate[D]. Beijing: University of Science and Technology Beijing, 2021.

    Google Scholar

    [25] 谢宝华, 罗云波, 王丰雨等. 国外某难选钛铁矿选矿试验研究[J]. 钢铁钒钛, 2023, 44(5): 36−40.

    Google Scholar

    XIE B H, LUO Y B, WANG F Y. Experimental study on beneficiation of a foreign refractory ilmenite ore[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 36−40.

    Google Scholar

    [26] 张乐. 从辽西地区钒钛磁铁矿选铁尾矿中分选钛精矿的实验研究[D]. 沈阳: 东北大学, 2020.

    Google Scholar

    ZHANG L. Enrichment of titamium from tailings of vanadia titania ore in western Liaoning[D]. Shenyang: Northeastern University, 2020.

    Google Scholar

    [27] 周政, 赵华伦, 李兵荣, 等. 红格某钒钛磁铁矿选矿试验研究[J]. 矿产综合利用, 2018(1): 32−35. doi: 10.3969/j.issn.1000-6532.2018.01.007

    CrossRef Google Scholar

    ZHOU Z, ZHAO H L, LI B R, et al. Experimental study on a vanadium−titanium magnetite in Hongge[J]. Multipurpose Utilization of Mineral Resources, 2018(1): 32−35. doi: 10.3969/j.issn.1000-6532.2018.01.007

    CrossRef Google Scholar

    [28] 安登气. 陕西某低品位钒钛磁铁矿资源综合利用新工艺研究[J]. 湖南有色金属, 2013, 29(5): 10−13,62. doi: 10.3969/j.issn.1003-5540.2013.05.004

    CrossRef Google Scholar

    AN D Q. New technology research on a low titanomagnetite resource comprehensive utilization in Shanxi[J]. Hu’nan Nonferrous Metals, 2013, 29(5): 10−13,62. doi: 10.3969/j.issn.1003-5540.2013.05.004

    CrossRef Google Scholar

    [29] 李金林, 李韦韦, 祝勇涛, 等. 攀西某钒钛磁铁矿选矿试验研究[J]. 钢铁钒钛, 2020, 41(6): 66−73. doi: 10.7513/j.issn.1004-7638.2020.06.013

    CrossRef Google Scholar

    LI J L, LI W W, ZHU Y T, et al. Beneficiation of a vanadium−titanium magnetite in Panxi[J]. Iron Steel Vanadium Titanium, 2020, 41(6): 66−73. doi: 10.7513/j.issn.1004-7638.2020.06.013

    CrossRef Google Scholar

    [30] 陈碧, 王勇. 白马表外矿选矿工艺试验[J]. 现代矿业, 2019, 35(12): 133−137+169. doi: 10.3969/j.issn.1674-6082.2019.12.038

    CrossRef Google Scholar

    CHEN B, WANG Y. Ore dressing process test of Baima off−surface ore[J]. Modern Mining, 2019, 35(12): 133−137+169. doi: 10.3969/j.issn.1674-6082.2019.12.038

    CrossRef Google Scholar

    [31] 张树石, 胡鹏, 饶家庭, 等. 钒钛磁铁矿综合利用现状及HIsmelt冶炼可行性分析[J]. 中南大学学报(自然科学版), 2021, 52(9): 3085−3092.

    Google Scholar

    ZHANG S S, HU P, RAO J T, et al. Comprehensive utilization status of vanadium−titanium magnetite and feasibility analysis of HIsmelt smelting[J]. Journal of Central South University (Natural Science Edition), 2021, 52(9): 3085−3092.

    Google Scholar

    [32] 关智浩. 辽西低品位钒钛磁铁矿铁、钛分步富集试验研究[D]. 阜新: 辽宁工程技术大学, 2021.

    Google Scholar

    GUAN Z H. Experimental study on the stepwise enrichment of iron and titanium in low−grade vanadium−titanium magnetite in western Liaoning[D]. Fuxin: Liaoning Technical University, 2021.

    Google Scholar

    [33] ZHAO W, CHU M, WANG H, et al. Reduction behavior of vanadium−titanium magnetite carbon composite hot briquette in blast furnace process[J]. Powder Technology, 2019, 342: 214−223. doi: 10.1016/j.powtec.2018.09.069

    CrossRef Google Scholar

    [34] HU Q, MA D, ZHOU K, et al. Phase transformation and slag evolution of vanadium–titanium magnetite pellets during softening–melting process[J]. Powder Technology, 2022, 396: 710−717. doi: 10.1016/j.powtec.2021.11.035

    CrossRef Google Scholar

    [35] LUO X, ZHAO L, DONG H. Study on DEM parameter calibration and wear characteristics of vanadium−titanium magnetite pellets[J]. Powder Technology, 2021, 393: 427−440. doi: 10.1016/j.powtec.2021.07.077

    CrossRef Google Scholar

    [36] 吕超. 攀枝花钒钛磁铁矿精矿制备中钛渣的技术和理论研究[D]. 昆明: 昆明理工大学, 2017.

    Google Scholar

    LV C. Technical and theoretical study on preparation of titanium slag from Panzhihua vanadium titanomagnetite concentrate [D]. Kunming: Kunming University of Science and Technology, 2017.

    Google Scholar

    [37] 高艳虹. 钒钛磁铁矿选择性浸出研究[D]. 沈阳: 东北大学, 2020.

    Google Scholar

    GAO Y H. Study on selective leaching of vanadium titanium magnetite[D]. Shenyang: Northeastern University, 2020.

    Google Scholar

    [38] 郭客, 张志强, 王绍艳, 等. 钒钛磁铁精矿中钛铁分离技术研究[J]. 金属矿山, 2019(8): 113−119. doi: 10.19614/j.cnki.jsks.201908021

    CrossRef Google Scholar

    GUO K, ZHANG Z Q, WANG S Y, et al. Study on separation technology of titanium and iron from vanadium−titanium magnetite concentrate[J]. Metal Mine, 2019(8): 113−119. doi: 10.19614/j.cnki.jsks.201908021

    CrossRef Google Scholar

    [39] 吴喜. 钒钛磁铁矿煤基一步直接还原—熔分研究[D]. 昆明: 昆明理工大学, 2019.

    Google Scholar

    WU X. Study on one−step direct reduction−melting of vanadium titanium magnetite based on coal. Kunming: Kunming University of Science and Technology, 2019.

    Google Scholar

    [40] 刘功国. 基于转底炉直接还原工艺的钒钛磁铁矿综合利用试验研究[J]. 钢铁研究, 2012, 40(2): 4−7.

    Google Scholar

    LIU G G. Study on applid technology of vanadium titanium magnetite based on rotary hearth furnace direct reduction process[J]. Research on Iron and Steel, 2012, 40(2): 4−7.

    Google Scholar

    [41] 储满生, 唐珏, 柳政根, 等. 高铬型钒钛磁铁矿综合利用现状及进展[J]. 钢铁研究学报, 2017, 29(5): 335−344. doi: 10.13228/j.boyuan.issn1001-0963.20170030

    CrossRef Google Scholar

    CHU M S, TANG Y, LIU Z G, et al. Presentation situation and progress of comprehensive utilization for high chromium vanadium bellingtitanomagnetie[J]. Journal of Iron and Steel Research, 2017, 29(5): 335−344. doi: 10.13228/j.boyuan.issn1001-0963.20170030

    CrossRef Google Scholar

    [42] 师学峰, 徐红军, 张颖异, 等. 钒钛磁铁矿气基竖炉直接还原试验研究[J]. 钢铁钒钛, 2015, 36(1): 52−56.

    Google Scholar

    SHI X F, XU H J, ZHANG Y Y, et al. The Experimental study on direct reduction of shaft furnace based gas of vanadium titanium magnetite[J]. Iron Steel Vanadium Titanium, 2015, 36(1): 52−56.

    Google Scholar

    [43] 张以敏. 高铬型钒钛磁铁矿还原钠化熔分耦合新技术研究[D]. 北京: 中国科学院大学, 2018.

    Google Scholar

    ZHANG Y M. Study on the New Technology of direct reduction society oxidation smeiting separation coupled technology for high chromium vanadium bearing titanomagnetite[D]. Beijing: University of chinese academy of sciences, 2018.

    Google Scholar

    [44] 曹栓伟. 钒钛磁铁矿钠化熔分提钒技术研究[D]. 西安: 西安建筑科技大学, 2020.

    Google Scholar

    CAO S W. Study on technology of extracting vanadium by sodiumziation melting of vanadium−titanium magnetite[D]. Xi'an: Xi'an University of Architecture and Technology, 2020.

    Google Scholar

    [45] 朱德庆, 姜涛, 郭宇峰, 等. 钒钛磁铁精矿铁钒钛综合利用新流程[J]. 矿产综合利用, 1999(2): 17−21. doi: 10.3969/j.issn.1000-6532.1999.02.005

    CrossRef Google Scholar

    ZHU D Q, JIANG T, GUO Y F, et al. Innovative process for comprehensive utilization of vanadium−bearing titanomagnetite concentrate[J]. Multipurpose Utilization of Mineral Resources, 1999(2): 17−21. doi: 10.3969/j.issn.1000-6532.1999.02.005

    CrossRef Google Scholar

    [46] 都兴红, 解斌, 娄太平. 钒钛磁铁矿固态还原的研究[J]. 东北大学学报(自然科学版), 2012, 33(5): 685−688. doi: 10.12068/j.issn.1005-3026.2012.05.019

    CrossRef Google Scholar

    DU X H, XIE B, LOU T P. Research on solid reduction of vanadium−titanium magnetite[J]. Journal of Northeastern University (Natural Science), 2012, 33(5): 685−688. doi: 10.12068/j.issn.1005-3026.2012.05.019

    CrossRef Google Scholar

    [47] SUI Y, GUO Y, JIANG T, et al. Separation and recovery of iron and titanium from oxidized vanadium titano−magnetite by gas−based reduction roasting and magnetic separation[J]. Journal of Materials Research and Technology, 2019, 8(3): 3036−3043. doi: 10.1016/j.jmrt.2018.05.031

    CrossRef Google Scholar

    [48] 扈维明, 何刚, 张洪波. 太和钒钛磁铁尾矿再回收选矿试验研究[J]. 矿产综合利用, 2013(6): 50−53. doi: 10.3969/j.issn.1000-6532.2013.06.014

    CrossRef Google Scholar

    HU W M, HE G, ZHANG H B. Research on recycling and mineral processing for taihe vanadium titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2013(6): 50−53. doi: 10.3969/j.issn.1000-6532.2013.06.014

    CrossRef Google Scholar

    [49] 邓冰, 张渊, 杨永涛, 等. 攀西某钒钛磁铁矿选铁尾矿选钛试验研究[J]. 矿产综合利用, 2018(2): 91−96. doi: 10.3969/j.issn.1000-6532.2018.02.020

    CrossRef Google Scholar

    DENG B, ZHANG Y, YANG Y T. Study on ilmenite separation from the iron tailings of a vandium−titanium magnetite ore in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2018(2): 91−96. doi: 10.3969/j.issn.1000-6532.2018.02.020

    CrossRef Google Scholar

    [50] 闵世俊. 钒钛磁铁矿尾矿中钒的提取工艺和动力学研究[D]. 成都: 成都理工大学, 2009.

    Google Scholar

    MIN S J. Technology of extraction and kinetics of leaching vanadium from vanadium titanium magnetite tailings[D]. Chengdu: Chengdu University of Technology, 2009.

    Google Scholar

    [51] 陈超, 张裕书, 李潇雨, 等. 攀西某钒钛磁铁矿尾矿中磷的回收实验研究[J]. 矿产综合利用, 2021(4): 165−169. doi: 10.3969/j.issn.1000-6532.2021.04.026

    CrossRef Google Scholar

    CHEN C, ZHANG Y S, LI X Y, et al. Recovery of phosphorus from a vanadium titanium magnetite tailing in Panxi[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 165−169. doi: 10.3969/j.issn.1000-6532.2021.04.026

    CrossRef Google Scholar

    [52] 孙大勇. 某钒钛磁铁矿尾矿综合回收磷选矿试验研究[J]. 矿业研究与开发, 2017, 37(11): 73−76.

    Google Scholar

    SUN D Y. Separation experience study on the comprehensive recovery of photosphorus from tailings of vanadium−titano magnetite mine[J]. Mining Research and Development, 2017, 37(11): 73−76.

    Google Scholar

    [53] 张韶敏. 承德某超贫钒钛磁铁矿干抛尾矿回收磷的试验研究[J]. 矿冶, 2013, 22(S1): 1−4. doi: 10.3969/j.issn.1005-7854.2013.z1.001

    CrossRef Google Scholar

    ZHANG S M. Experimental study on phosphorus recovery from dry−discarded tailings of an ultra−low vanadium−titanium magnetite ore in Chengde[J]. Mining and Metallurgy, 2013, 22(S1): 1−4. doi: 10.3969/j.issn.1005-7854.2013.z1.001

    CrossRef Google Scholar

    [54] 张作金, 周振华, 吴天来, 等. 河北某钒钛磁铁矿尾矿中回收铜实验研究[J]. 矿产综合利用, 2023(3): 27−30.

    Google Scholar

    ZHANG Z J, ZHOU Z H, WU T L, et al. Study on copper recovery from tailings of a vanadium titanomagnetite in Hebei[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 27−30.

    Google Scholar

    [55] 董礼辉, 师文裕. 钒钛磁铁矿选铁尾矿中硫钴资源综合回收研究[J]. 科技风, 2018(26): 160. doi: 10.19392/j.cnki.1671-7341.201826142

    CrossRef Google Scholar

    DONG L H, SHI W Y. Study on comprehensive recovery of sulfur and cobalt resources in iron tailings of vanadium titanomagnetite[J]. Technology Wind, 2018(26): 160. doi: 10.19392/j.cnki.1671-7341.201826142

    CrossRef Google Scholar

    [56] 杨伟卓. 钒钛磁铁矿尾矿中金银镍钴铜的综合回收利用工艺[D]. 湘潭: 湘潭大学, 2015.

    Google Scholar

    YANG W Z. The comprehensive recovery processes of gold, silver, nickel, cobalt and copper from tailings of Vanadium titano−magnetite ore[D]. Xiangtan: Xiangtan University, 2015.

    Google Scholar

    [57] 黄雯孝, 卢可可. 攀西钒钛磁铁矿尾矿中钪的提取工艺研究[J]. 矿产综合利用, 2020(2): 135−139. doi: 10.3969/j.issn.1000-6532.2020.02.024

    CrossRef Google Scholar

    HUANG W X, LU K K. Study on scandium extraction technology for Panxi vanadium titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 135−139. doi: 10.3969/j.issn.1000-6532.2020.02.024

    CrossRef Google Scholar

    [58] 葛阳阳, 孟建卫, 张凯熙, 等. 含氟助剂两段酸浸提取钒钛磁铁矿尾矿中的钪[J]. 稀土, 2022, 43(4): 73−80.

    Google Scholar

    GE Y Y, MENG J W, ZHANG K X, et al. Extraction of scandium from vanadium−titanium magnetite tailings by two stage acid leaching with fluorine−containing additives[J]. Chinese Rare Earths, 2022, 43(4): 73−80.

    Google Scholar

    [59] 王登红, 孙艳, 代鸿章, 等. 我国“三稀矿产”的资源特征及开发利用研究[J]. 中国工程科学, 2019, 21(1): 119−127. doi: 10.15302/J-SSCAE-2019.01.017

    CrossRef Google Scholar

    WANG D H, SUN Y, DAI H Z, et al. Characteristics and exploitation of rare earth, rare metal and rare−scattered element minerals in China[J]. Strategic Study of CAE, 2019, 21(1): 119−127. doi: 10.15302/J-SSCAE-2019.01.017

    CrossRef Google Scholar

    [60] 吴恩辉, 杨绍利. 从攀枝花钒钛磁铁矿中回收镓的研究进展[J]. 中国有色冶金, 2010, 39(1): 45−47. doi: 10.3969/j.issn.1672-6103.2010.01.012

    CrossRef Google Scholar

    WU E H, YANG S L. Research on recovery of gallium from vanadium titano−magnetite at Panzhihua[J]. China Nonferrous Metallurgy, 2010, 39(1): 45−47. doi: 10.3969/j.issn.1672-6103.2010.01.012

    CrossRef Google Scholar

    [61] CUI T, ZHU X, WU L, et al. Ultrasonic assisted dispersive liquid−liquid microextraction combined with flame atomic absorption spectrometry for determination of trace gallium in vanadium titanium magnetite[J]. Microchemical Journal, 2020, 157: 104993. doi: 10.1016/j.microc.2020.104993

    CrossRef Google Scholar

    [62] 刘佳媛. 攀枝花钒钛磁铁矿中镓的研究进展[J]. 现代矿业, 2019(1): 102−105. doi: 10.3969/j.issn.1674-6082.2019.01.023

    CrossRef Google Scholar

    LIU J Y. Research progress of gallium in Panzhihua vanadium titano− magnetite ore[J]. Morden Mining, 2019(1): 102−105. doi: 10.3969/j.issn.1674-6082.2019.01.023

    CrossRef Google Scholar

    [63] 高磊, 施哲, 阴树标, 等. 提钒尾渣镓回收方法研究[J]. 矿冶, 2014, 23(3): 73−76. doi: 10.3969/j.issn.1005-7854.2014.03.018

    CrossRef Google Scholar

    GAO L, SHI Z, YIN S B, et al. Study on the recovery method of gallium from vanadium extraction tailings[J]. Mining and Metallurgy, 2014, 23(3): 73−76. doi: 10.3969/j.issn.1005-7854.2014.03.018

    CrossRef Google Scholar

    [64] ZHU X, SUN N, HUANG Y, et al. Preparation of full tailings−based foam ceramics and auxiliary foaming effect of vanadium−titanium magnetite tailings[J]. Journal of Non−Crystalline Solids, 2021, 571: 121063. doi: 10.1016/j.jnoncrysol.2021.121063

    CrossRef Google Scholar

    [65] 杨飞, 孙晓敏. 利用钒钛磁铁矿尾矿制备普通硅酸盐水泥熟料的研究[J]. 钢铁钒钛, 2020, 41(2): 75−81. doi: 10.7513/j.issn.1004-7638.2020.02.015

    CrossRef Google Scholar

    YANG F, SUN X M. Preparation of ordinary portland cement clinker from vanadium−titanium magnetite tailing[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 75−81. doi: 10.7513/j.issn.1004-7638.2020.02.015

    CrossRef Google Scholar

    [66] 王修贵, 秦连银. 利用钒钛磁铁矿尾矿制备高强度混凝土的试验研究[J]. 钢铁钒钛, 2019, 40(3): 77−82. doi: 10.7513/j.issn.1004-7638.2019.03.014

    CrossRef Google Scholar

    WANG X G, QIN L Y. Preparation of high strength concrete from vanadium titanomagnetite tailings[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 77−82. doi: 10.7513/j.issn.1004-7638.2019.03.014

    CrossRef Google Scholar

    [67] 李林. 钒钛磁铁矿尾矿制备泡沫陶瓷材料及性能研究[D]. 沈阳: 东北大学, 2019.

    Google Scholar

    LI L. Experimental study on preparation of foamed ceramic materials by using vanadium titanium magnetite tailings and its properties[D]. Shenyang: Northeastern University, 2019.

    Google Scholar

    [68] LI L, JIANG T, CHEN B, et al. Overall utilization of vanadium–titanium magnetite tailings to prepare lightweight foam ceramics[J]. Process Safety and Environmental Protection, 2020, 139: 305−314. doi: 10.1016/j.psep.2020.04.034

    CrossRef Google Scholar

    [69] 丁春江, 张凯峰. 某钒钛磁铁矿尾矿制备加气混凝土砌块的研究[J]. 钢铁钒钛, 2022, 43(2): 94−100.

    Google Scholar

    DING C J, ZHANG K F. Study on preparation of aerated concrete block from vanadium−titanium magnetite tailing[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 94−100.

    Google Scholar

    [70] 吝晓然. 钒钛铁尾矿微粉作为掺合料制备预拌混凝土的研究[D]. 邯郸: 河北工程大学, 2019.

    Google Scholar

    LIN X R. Study on preparation of ready−mixed concrete from vanadium−titanium iron ore tailings as minerals admixture[D]. Handan: Hebei University of Engineering, 2019.

    Google Scholar

    [71] 和丽丽, 王维清, 张杰, 等. 攀枝花某钒钛磁铁矿尾矿综合利用[J]. 矿产综合利用, 2023(3): 21−26.

    Google Scholar

    HE L L, WANG W Q, ZHANG J, et al. Comprehensive utilization of tailings of the vanadium−titanium magnetite in Panzhihua[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 21−26.

    Google Scholar

    [72] 朱欣宇. 尾矿基高铁发泡陶瓷的可控制备及机理研究[D]. 绵阳: 西南科技大学, 2022.

    Google Scholar

    ZHU X Y. Controllable preparation and mechanism of tailings−based high−iron foam ceramics[D]. Mianyang: Southwest University of Science and Technology, 2022.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(495) PDF downloads(25) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint