Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 5
Article Contents

LIN Yingxin, YANG Zhehui, LI Maolin, ZHAO Yanqiu, YAO Wei, CUI Rui. Effect and Mechanism of Combined Inhibitor of Zn2+ and Sodium Humate on the Flotation Separation of Fluorite and Calcite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2023.05.009
Citation: LIN Yingxin, YANG Zhehui, LI Maolin, ZHAO Yanqiu, YAO Wei, CUI Rui. Effect and Mechanism of Combined Inhibitor of Zn2+ and Sodium Humate on the Flotation Separation of Fluorite and Calcite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2023.05.009

Effect and Mechanism of Combined Inhibitor of Zn2+ and Sodium Humate on the Flotation Separation of Fluorite and Calcite

More Information
  • The common calcite−type fluorite ore is difficult to separate by flotation due to the similar physicochemical properties of the surface of calcite and fluorite. The effect of the combined inhibitors of ZnSO4·7H2O and sodium humate on the selective separation flotation of fluorite and calcite was investigated, and the mechanism was analyzed by adsorption measurement, XPS detection, infrared spectroscopy analysis, and solution chemistry calculation. The experimental results showed that compared with the single sodium humate inhibitor, under the conditions of the combined inhibitors dosage of 20 mg/L when the mass ratio of sodium humate to ZnSO4·7H2O was 3∶1, sodium oleate dosage of 1.5×10−4 mol/L and pH 7, the difference of fluorite and calcite flotation recovery was increased from 41.8% to 70.31%. the zinc humate generated by the chemical reaction between sodium humate and Zn2+ increased the humate adsorption of the calcite surface compared with the single inhibitor, decreased the humate adsorption of the fluorite surface, increased more active sites on the surface of the fluorite and the sodium oleate adsorption, resulting in improving the selective adsorption of the combination inhibitors on the surface of the two minerals and achieving the purpose of flotation separation.

  • 加载中
  • [1] 中华人民共和国自然资源部. 中国矿产资源报告2018[M]. 北京: 地质出版社, 2018.

    Google Scholar

    Ministry of Natural Resources of the People's Republic of China a. China mineral resources report 2018 [M]. Beijing: Geological Press, 2018

    Google Scholar

    [2] 毛景文, 杨宗喜, 谢桂青, 等. 关键矿产−国际动向与思考[J]. 矿床地质, 2019, 38(4): 689−698. doi: 10.16111/j.0258-7106.2019.04.001

    CrossRef Google Scholar

    MAO J W, ANG Z X, XIE G Q, et al. Key minerals−International trends and reflections[J]. Mineral Deposits Geology, 2019, 38(4): 689−698. doi: 10.16111/j.0258-7106.2019.04.001

    CrossRef Google Scholar

    [3] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189−1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    CrossRef Google Scholar

    WANG D H. Research significance, mineral species definition, resource attributes, progress of mineral search, problems and main directions of research on key minerals[J]. Journal of Geology, 2019, 93(6): 1189−1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    CrossRef Google Scholar

    [4] 李敬, 张寿庭, 商朋强, 等. 萤石资源现状及战略性价值分析[J]. 矿产保护与利用, 2019, 39(6): 62−68. doi: 10.13779/j.cnki.issn1001-0076.2019.06.010

    CrossRef Google Scholar

    LI J, ZHANG S T, SHANG P Q, et al. Current situation and strategic value analysis of fluorite resources[J]. Mineral Protection and Utilization, 2019, 39(6): 62−68. doi: 10.13779/j.cnki.issn1001-0076.2019.06.010

    CrossRef Google Scholar

    [5] 李育彪, 杨旭. 我国萤石资源及选矿技术进展[J]. 矿产保护与利用, 2022, 42(2): 49−58.

    Google Scholar

    LI Y B, YANG X. Progress of fluorite resources and beneficiation technology in China[J]. Mineral Protection and Utilization, 2022, 42(2): 49−58.

    Google Scholar

    [6] 邓湘湘, 廖德华. 萤石选矿技术研究现状[J]. 怀化学院学报, 2015, 34(11): 94−96. doi: 10.3969/j.issn.1671-9743.2015.11.024

    CrossRef Google Scholar

    DENG X X, LIAO D H. Research status of fluorite beneficiation technology[J]. Journal of Huaihua College, 2015, 34(11): 94−96. doi: 10.3969/j.issn.1671-9743.2015.11.024

    CrossRef Google Scholar

    [7] ZENG X B, XU L H, TIAN J, et al. Effect of a ca depressant on flotation separation of celestite from fluorite and calcite using sds as a collector[J]. Minerals Engineering, 2017, 111: 201−208. doi: 10.1016/j.mineng.2017.06.019

    CrossRef Google Scholar

    [8] KEQING FA, ANH V. Nguyen, Jan D. Miller. Interaction of calcium dioleate collector colloids with calcite and fluorite surfaces as revealed by afm force measurements and molecular dynamics simulation[J]. International Journal of Mineral Processing, 2006, 81(3): 166−177. doi: 10.1016/j.minpro.2006.08.006

    CrossRef Google Scholar

    [9] LONGHUA XU, HOUQIN WU, FAQIN DONG, et al. Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica[J]. Minerals Engineering, 2013, 41: 41−45. doi: 10.1016/j.mineng.2012.10.015

    CrossRef Google Scholar

    [10] YANG B Q, WANG D R, WANG T S, et al. Effect of Cu2+ and Fe3+ on the depression of molybdenite in flotation[J]. Minerals Engineering, 2019, 130: 101−109. doi: 10.1016/j.mineng.2018.10.012

    CrossRef Google Scholar

    [11] 许鸿国. 金属离子对白钨矿、方解石、萤石浮选的影响及作用机理研究[D]. 赣州: 江西理工大学, 2015.

    Google Scholar

    Hsu H. G. . Research on the effect and action mechanism of metal ions on scheelite, calcite and fluorite flotation[D]. Ganzhou: Jiangxi University of Technology, 2015.

    Google Scholar

    [12] 宁江峰. Zn2+、Fe3+与水玻璃组合抑制剂对萤石、方解石浮选分离的影响研究[D]. 武汉: 武汉科技大学, 2021.

    Google Scholar

    NING J F. Study on the effect of combined inhibitors of Zn2+, Fe3+ and water glass on the flotation separation of fluorite and calcite[D]. Wuhan: Wuhan University of Science and Technology, 2021.

    Google Scholar

    [13] 聂光华. 含氟矿物与含钙碳酸盐矿物选择性抑制及机理研究[D]. 北京: 北京科技大学, 2016.

    Google Scholar

    NIE G H. Research on selective inhibition and mechanism of fluorine−bearing minerals and calcium−bearing carbonate minerals [D]. Beijing: University of Science and Technology Beijing, 2016.

    Google Scholar

    [14] 刘佳, 易平, 戴情园, 等. 腐植酸钠修饰磁性纳米颗粒的开发与应用[J]. 金属材料与冶金工程, 2016, 44(2): 61−64. doi: 10.16793/j.cnki.2095-5014.2016.02.013

    CrossRef Google Scholar

    LIU J, YI P, DAI Q Y, et al. Development and application of sodium humate−modified magnetic nanoparticles[J]. Metal Materials and Metallurgical Engineering, 2016, 44(2): 61−64. doi: 10.16793/j.cnki.2095-5014.2016.02.013

    CrossRef Google Scholar

    [15] 姚钰昀, 王雅静, 方子川, 等. 萤石矿浮选药剂研究进展[J]. 现代矿业, 2018, 34(11): 89−93. doi: 10.3969/j.issn.1674-6082.2018.11.021

    CrossRef Google Scholar

    YAO Y Y, WANG Y J, FANG Z C, et al. Research progress of fluorite ore flotation chemicals[J]. Modern Mining, 2018, 34(11): 89−93. doi: 10.3969/j.issn.1674-6082.2018.11.021

    CrossRef Google Scholar

    [16] 赵若涵. 海藻酸钙−nZVI−生物炭复合材料对Pb−Zn−Cd污染土壤的钝化机制研究[D]. 贵阳: 贵州大学, 2022.

    Google Scholar

    ZHAO R H. Study on the passivation mechanism of calcium alginate−nZVI−biochar composite on Pb−Zn−Cd contaminated soil[D]. Guiyang: Guizhou University, 2022.

    Google Scholar

    [17] 陈志友, 冯其明, 石晴. 腐殖酸钠对石英分散性能影响的机理研究[J]. 非金属矿, 2017, 40(4): 70−72. doi: 10.3969/j.issn.1000-8098.2017.04.021

    CrossRef Google Scholar

    CHEN Z Y, FENG Q M, SHI Q. Mechanistic study on the effect of sodium humate on the dispersion properties of quartz[J]. Nonmetallic Mining, 2017, 40(4): 70−72. doi: 10.3969/j.issn.1000-8098.2017.04.021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(371) PDF downloads(25) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint