Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 5
Article Contents

LI Yachao, ZHANG Huaiyao, JIA Kai, FAN Guixia. Research Development of Cassiterite Flotation Reagents[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 62-70. doi: 10.13779/j.cnki.issn1001-0076.2023.05.007
Citation: LI Yachao, ZHANG Huaiyao, JIA Kai, FAN Guixia. Research Development of Cassiterite Flotation Reagents[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 62-70. doi: 10.13779/j.cnki.issn1001-0076.2023.05.007

Research Development of Cassiterite Flotation Reagents

More Information
  • Tin is an indispensable key strategic metal in modern industry. In China, Tin ore resources are abundant, however, with the depletion of high−quality tin ore, the characteristics of tin ore resources being poor, fine, and mixed are becoming increasingly prominent. The presence of fine particles and complex components has become a significant technical challenge in the recovery of tin ore resources. Flotation, as the primary method for recovering fine cassiterite, demands a crucial selection of flotation reagents. In this paper, the characteristics and mechanisms of common fatty acid collectors, arsenic acid collectors, phosphate collectors, alkyl sulfosuccinic acid collectors, and hydroxamic acid collectors were summarized. The application results of novel hydroxamic acid collectors in cassiterite flotation and the combination of collectors, activators, and inhibitors in cassiterite flotation were emphatically introduced, which provide a reference for the development of new reagents in cassiterite flotation.

  • 加载中
  • [1] SHI W Y, HAO R D, JIN H C. An evaluation of the supply risk for china's strategic metallic mineral resources[J]. Resources Policy, 2020, 70(11): 247−254.

    Google Scholar

    [2] DONG L H, REN Y C, YUAN T Z, et al. Cassiterite beneficiation in china: a mini−review[J]. Journal of Central South University, 2023, 30(1): 1−19. doi: 10.1007/s11771-023-5245-4

    CrossRef Google Scholar

    [3] 宫贵臣, 韩跃新, 刘杰, 等. 油酸钠在锡石(211)表面吸附的量子化学研究[J]. 东北大学学报(自然科学版), 2018, 5(9): 639−644.

    Google Scholar

    GONG G C, HAN Y X, LIU J, et al. Quantum chemical study on adsorption of sodium oleate on cassiterite (211) surface[J]. Journal of Northeastern University (Natu-ral Science), 2018, 5(9): 639−644.

    Google Scholar

    [4] ANGADI S I, SREENIVAS T, JEON H−S, et al. A review of cassiterite beneficiation fundamentals and plant practices[J]. Minerals Engineering, 2015, 70(10): 178−200.

    Google Scholar

    [5] 胡法林, 曹沁波, 严文超. 锡石选矿工艺和药剂研究进展[J]. 有色金属, 2022, 10(3): 66−72.

    Google Scholar

    HU F L, CAO Q B, YAN W C. Research progress of cassiterite beneficiation technology and chemicals[J]. Nonferrous Metals, 2022, 10(3): 66−72.

    Google Scholar

    [6] PENHALLURICK R D. Tin in antiquity: its mining and trade throughout the ancient world with particular reference to cornwall[M]. Taylor and Francis, 2023.

    Google Scholar

    [7] XIA J L. Study on the characteristics and evolution of International tin ore trade based on a complex network perspective[J]. International Journal of Wireless Information Networks, 2021, 30(1): (119−128).

    Google Scholar

    [8] 陈丛林, 张伟. 全球锡矿资源现状及供需分析[J]. 矿产保护与利用, 2021, 41(4): 172−178.

    Google Scholar

    CHEN C L, ZHANG W. Global tin resource status and supply and demand analysis[J]. Conservation and Utilization of Mineral Resources 2021, 41(4): 172−178.

    Google Scholar

    [9] 刘杰. 细粒锡石选矿技术研究进展及展望[J]. 金属矿山, 2014, 32(9): 76−81.

    Google Scholar

    LIU J. Research progress and prospect of fine cassiterite mineral processing technology[J]. Metal Mine, 2014, 32(9): 76−81.

    Google Scholar

    [10] JIALI C, WEN C S, NENG P S, et al. In situ trace element compositions and U−Pb ages of cassiterite from tin−polymetallic deposits in the dachang district, duangxi, china: implications for ore genesis and exploration[J]. Journal of Geochemical Exploration, 2023, 247(6): 701−710.

    Google Scholar

    [11] 常自勇, 李玉娇, 沈政昌, 等. 微细粒矿物浮选捕收剂的应用及其机理研究进展[J]. 工程科学学报, 2023, 45(11): 1807−1819.

    Google Scholar

    CHANG Z Y, LI Y J, SHEN Z C, et al. Research progress on the application and mechanism of flotation collector for fine minerals[J]. Journal of Engineering science, 2023, 45(11): 1807−1819.

    Google Scholar

    [12] 宫贵臣. 锡石膦酸捕收剂分子结构设计及作用机理研究[D]. 东北: 东北大学, 2019.

    Google Scholar

    GONG G C. Molecular Structure design and mechanism study of cassiterite phosphonic acid collector[D]. Northeast: Northeastern University, 2019.

    Google Scholar

    [13] 谭鑫. 钨锡矿物螯合捕收剂靶向性分子设计及其作用机理研究[D]. 东北: 东北大学, 2017.

    Google Scholar

    TAN X. Targeting molecular design and mechanism study of tungsten−tin mineral chelating collector[D]. Northeast: Northeastern University, 2017.

    Google Scholar

    [14] 张文杰, 华中宝, 谢贤, 等. 锡石选别工艺和药剂研究进展[J]. 金属矿山, 2021, 542(8): 116−121.

    Google Scholar

    ZHANG W J, HUAZ H B, XIE X, et al. Research progress of cassiterite separation technology and chemicals[J]. Metal Mine, 2021, 542(8): 116−121.

    Google Scholar

    [15] TAN X, HE F Y, SHANG Y B, et al. Flotation behavior and adsorption mechanism of (1−hydroxy−2−methyl−2−octenyl) phosphonic acid to cassiterite[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(9): 2469−2478. doi: 10.1016/S1003-6326(16)64368-6

    CrossRef Google Scholar

    [16] 东乃良. 民主德国阿尔腾贝格锡选矿厂考察[J]. 有色金属(选矿部分), 1988, (03): 55−56+49.

    Google Scholar

    DONG N L. Investigation of the tin concentrator in Altenberg[J], Nonferrous Metals(Mineral Processing Section), 1988, (03): 55−56+49.

    Google Scholar

    [17] 郑其方, 刘殿文, 李佳磊, 等. 锡石浮选捕收剂机理研究进展[J]. 中国有色金属学报, 2021, 31(3): 785−795.

    Google Scholar

    ZHENG Q F, LIU D W, LI J L, et al. Research progress on mechanism of cassiterite flotation collector[J]. Chinese Journal of Nonferrous Metals, 2021, 31(3): 785−795.

    Google Scholar

    [18] 曾清华, 张秀华, 姜二龙. Aerosol−22与锡石浮选作用机理[J]. 有色金属, 1996(4): 30−35.

    Google Scholar

    ZENG Q H, ZHANG X H, JIANG E L. Mechanism of Aerosol−22 flotation with cassiterite[J]. Nonferrous Metals, 1996(4): 30−35.

    Google Scholar

    [19] QIN W, XU Y, LIU H. Flotation and surface behavior of cassiterite with salicylhydroxamic acid[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10778−10783.

    Google Scholar

    [20] TONG Y, HAIS H H, YUE H H, et al. Beneficiation and purification of tungsten and cassiterite minerals using Pb–BHA complexes flotation and centrifugal separation[J]. Minerals, 2018, 8(12): 124−134.

    Google Scholar

    [21] 彭蓉, 魏志聪, 曾明, 等. 锡石捕收剂的研究进展[J]. 矿产保护与利用, 2019, 39(4): 165−171.

    Google Scholar

    PENG R, WEI Z C, ZENG M, et al. Research progress of cassiterite collector[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 165−171.

    Google Scholar

    [22] 陈文岳. 细粒锡石表面特性及可浮性研究[D]. 东北: 东北大学, 2014.

    Google Scholar

    CHEN W Y. Study on surface characteristics and floatability of fine−grained cassite[D]. Northeast: Northeastern University, 2014.

    Google Scholar

    [23] FENG Q, WEN S, ZHAO W, et al. Effect of calcium ions on adsorption of sodium oleate onto cassiterite and quartz surfaces and implications for their flotation separation[J]. Separation and Purification Technology, 2018, 200(12): 300−306.

    Google Scholar

    [24] YONG C M, SHU M W, ZHEN H G, et al. Utilization of EDTMPA as an eco−friendly depressant for selective flotation separation of cassiterite from calcite in the oleate system[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 674(14): 300−306.

    Google Scholar

    [25] FU Q T, PENG L, YI J C, et al. Selective depression of low−molecular−weight carboxylated starch in flotation separation of forsterite and ilmenite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 648(21): 421−430.

    Google Scholar

    [26] CHAOFAN Z, PENG L, YIJUN C, et al. Synthesis of sodium oleate hydroxamate and its application as a novel flotation collector on the ilmenite−forsterite separation[J]. Separation and Purification Technology, 2022, 284(24): 752−761.

    Google Scholar

    [27] PENG H, LUO W, WU D, et al. Study on the effect of Fe3+ on zircon flotation separation from cassiterite using sodium oleate as collector[J]. Minerals, 2017, 7(7): 542−551.

    Google Scholar

    [28] 张超凡, 余青瑶, 曹亦俊, 等. 钛铁矿浮选药剂及其表面改性的研究进展[J]. 中国有色金属学报, 2021, 31(12): 3675−3689.

    Google Scholar

    ZHANG C F, YU Q Y, CAO Y J, et al. Research progress of flotation reagents and surface modification of ilmenite[J]. Chinese Journal of Nonferrous Metals, 2021, 31(12): 3675−3689.

    Google Scholar

    [29] 张钦发, 田忠诚. 混合甲苯胂酸对锡石的浮选作用机理[J]. 矿冶工程, 1989(1): 19−21.

    Google Scholar

    ZHANG Q F, TIAN Z C. Flotation mechanism of mixed toluene arsonic acid on cassiterite[J]. Mining and Metallurgical Engineering, 1989(1): 19−21.

    Google Scholar

    [30] 朱建光, 孙巧根. 苄基胂酸对锡石的捕收性能[J]. 有色金属, 1980(3): 36−40.

    Google Scholar

    ZHU J G, SUN Q G. Collection performance of benzyl arsonic acid for cassserite[J]. Nonferrous Metals, 1980(3): 36−40.

    Google Scholar

    [31] 王帅, 王明月, 杨佳, 等. 有机磷选冶药剂的合成与应用[J]. 矿产保护与利用, 2020, 40(2): 1−9.

    Google Scholar

    WANG S, WANG M Y, YANG J, et al. Synthesis and application of organophosphorus selective chemicals[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 1−9.

    Google Scholar

    [32] GONG G, HAN Y, LIU J, et al. In situ investigation of the adsorption of styrene phosphonic acid on cassiterite (110) surface by molecular modeling[J]. Minerals, 2017, 7(10): 754−765.

    Google Scholar

    [33] GONG G C, WANG P, LIU J, et al. Effect and mechanism of Cu(II) on flotation separation of cassiterite from fluorite[J]. Separation and Purification Technology, 2020, 238(21): 1572−1581.

    Google Scholar

    [34] GUI C G, JIE L, YUE X H. Comprehensive investigation of the adsorption of 2−carboxyethylphenylphosphinic acid on cassiterite[J]. Separation Science and Technology, 2021, 56(13): 1475−1485.

    Google Scholar

    [35] HUANG K, HUANG X, JIA Y, et al. A novel surfactant styryl phosphonate mono−iso−octyl ester with improved adsorption capacity and hydrophobicity for cassiterite flotation[J]. Minerals Engineering, 2019, 142(31): 2417−2426.

    Google Scholar

    [36] JING X J, ZHI W J, SI L S, et al. Preparation of a novel surfactant dibutyl (2−(hydroxyamino)−2−oxoethyl) phosphonate and its adsorption mechanism in cassiterite flotation[J]. Journal of Central South University, 2023, 30(5): 1475−1481.

    Google Scholar

    [37] 曾国旺, 庄故章, 张校熔, 等. 微细粒锡石浮选药剂研究现状[J]. 金属矿山, 2019(1): 115−119.

    Google Scholar

    ZENG G W, ZHUANG G Z, ZHANG Z R, et al. Research status of flotation reagents for fine cassiterite[J]. Metal Mine, 2019(1): 115−119.

    Google Scholar

    [38] BULATOVIC S, SILVIO E D. Process development for impurity removal from a tin gravity concentrate[J]. Minerals Engineering, 2000, 13(8): 275−286.

    Google Scholar

    [39] 张宝元, 钟宏. 羟胺法合成羟肟酸类捕收剂的研究进展[J]. 现代化工, 2010, 30(4): 11−15.

    Google Scholar

    ZHANG B Y, ZHONG H. Research progress of hydroxamic acid collector synthesis by hydroxylamine[J]. Modern Chemical Industry, 2010, 30(4): 11−15.

    Google Scholar

    [40] 车丽萍, 余永富, 庞金兴, 等. 羟肟酸类捕收剂的合成、性质及在稀土矿物浮选中的作用机理[J]. 稀土, 2004(6): 74−79+83.

    Google Scholar

    CHE L P, YU Y F, PANG J X, et al. Synthesis, properties and mechanism of hydroxamic acid collectors in flotation of rare earth minerals[J]. Rare Earth, 2004(6): 74−79+83.

    Google Scholar

    [41] WU X Q, ZHU J G. Selective flotation of cassiterite with benzohydroxamic acid[J]. Minerals Engineering, 2006, 19(14): 1410−1417. doi: 10.1016/j.mineng.2006.02.003

    CrossRef Google Scholar

    [42] SAI Z J, PENG Y Z, LE M O, et al. Flotation of cassiterite using alkyl hydroxamates with different carbon chain lengths: A theoretical and experimental study[J]. Minerals Engineering, 2021, 170(15): 1654−1663.

    Google Scholar

    [43] TIAN M, GAO Z, HAN H, et al. Improved flotation separation of cassiterite from calcite using a mixture of lead (II) ion/benzohydroxamic acid as collector and carboxymethyl cellulose as depressant[J]. Minerals Engineering, 2017, 113(17): 68−70.

    Google Scholar

    [44] TIAN M, HU Y, SUN W, et al. Study on the mechanism and application of a novel collector−complexes in cassiterite flotation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 522(5): 635−641.

    Google Scholar

    [45] SUN Q, DONG Y, WANG S, et al. Amide group enhanced self−assembly and adsorption of thioether−containing hydroxamic acid on cassiterite surface[J]. Aiche Journal, 2023, 69(5): 2451−2460.

    Google Scholar

    [46] SUN Q, LU Y, WANG S, et al. A novel surfactant 2−(benzylthio)−acetohydroxamic acid: Synthesis, flotation performance and adsorption mechanism to cassiterite, calcite and quartz[J]. Applied Surface Science, 2020, 522(30): 1478−1486.

    Google Scholar

    [47] YUXI L, SHUAI W, HONG Z. Optimization of conventional hydroxamic acid for cassiterite flotation: application of structural modification under principle of isomerism[J]. Minerals Engineering, 2021, 167(15): 2154−2163.

    Google Scholar

    [48] QI J, DONG Y, LIU S, et al. A selective flotation of cassiterite with a dithiocarbamate−hydroxamate molecule and its adsorption mechanism[J]. Applied Surface Science, 2021, 538(11): 575−584.

    Google Scholar

    [49] YU X, ZHANG R, YANG S, et al. A novel decanedioic hydroxamic acid collector for the flotation separation of bastnäsite from calcite[J]. Minerals Engineering, 2020, 151(24): 1437−1446.

    Google Scholar

    [50] CAO Y, SUN L, WANG Q, et al. DHX collector for recovery of cassiterite: mechanistic insights and practical implications[J]. Journal of Industrial and Engineering Chemistry, 2023, 127(25): 210−217.

    Google Scholar

    [51] GANG Z, TONG Z X, XU L F, et al. Flotation performance of anisic hydroxamic acid as new collector for tungsten and tin minerals[J]. Journal of Central South University, 2022, 29(11): 3645−3655. doi: 10.1007/s11771-022-5182-7

    CrossRef Google Scholar

    [52] ZHI Y G, ZHE Y J, WEI S, et al. Typical roles of metal ions in mineral flotation: a review[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(7): 2081−2101. doi: 10.1016/S1003-6326(21)65640-6

    CrossRef Google Scholar

    [53] KUI X C, SHENG M J, NAN D. Insights into the adsorption mechanism of benzohydroxamic acid in the flotation of rhodochrosite with Pb2+ activation[J]. Powder Technology, 2023, 427(24): 2514−2521.

    Google Scholar

    [54] WEI X, YAN H S, JIA Y Y, et al. Adsorption differences and mechanism of Pb−BHA and Al−BHA in the flotation separation of ilmenite and titanaugite[J]. Minerals Engineering, 2023, 197(14): 1467−1473.

    Google Scholar

    [55] XIAO Y, CUI Y, TONG X, et al. Activation mechanisms of Cu2+ and Pb2+ in stibnite flotation[J]. Minerals Engineering, 2023, 31(17): 2181−2201.

    Google Scholar

    [56] FENG Q, ZHAO W, WEN S, et al. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector[J]. Separation and Purification Technology, 2017, 178(7): 193−199.

    Google Scholar

    [57] SI Y N, ZHI H G, MENG J T, et al. Selective flotation separation of cassiterite and calcite through using cinnamohydroxamic acid as the collector and Pb2+ as the activator[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 666(12): 742−751.

    Google Scholar

    [58] ZHAO W, WEI S, PING S W, et al. The structure analysis of metal–organic complex collector: from single crystal, liquid phase, to solid/liquid interface[J]. Journal of Molecular Liquids, 2023, 382(15): 1344−1356.

    Google Scholar

    [59] TIAN M, ZHANG C, HAN H, et al. Effects of the preassembly of benzohydroxamic acid with Fe (III) ions on its adsorption on cassiterite surface[J]. Minerals Engineering, 2018, 127(21): 32−41.

    Google Scholar

    [60] CAO Y, SUN L, GAO Z, et al. Activation mechanism of zinc ions in cassiterite flotation with benzohydroxamic acid as a collector[J]. Minerals Engineering, 2020, 156(20): 125−131.

    Google Scholar

    [61] GONG G, WANG P, LIU J, et al. Effect and mechanism of Cu(II) on flotation separation of cassiterite from fluorite[J]. Separation and Purification Technology, 2019, 238(13): 1254−1263.

    Google Scholar

    [62] FENG Q, WEN S, ZHAO W, et al. Interaction mechanism of magnesium ions with cassiterite and quartz surfaces and its response to flotation separation[J]. Separation and Purification Technology, 2018, 206(29): 239−246.

    Google Scholar

    [63] YU M C, DONG X F, TONG X. Mineral processing; findings from kunming university in the area of mineral processing reported (Adsorption behavior of calcium ions and its effect on cassiterite flotation)[J]. Mining & Minerals, 2019, 216(19): 249−256.

    Google Scholar

    [64] HAN W, SHU M W, DIAN W L, et al. Surface characteristic and sulfidization-xanthate flotation behaviours of malachite as influenced by ferric ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 668(8): 345−356.

    Google Scholar

    [65] HAO S W, DO E, ROBERT M, et al. Influences of ferric ions and fe as a minor element in the lattice on the floatability of cassiterite[J]. ACS omega, 2023, 8(6): 48−57.

    Google Scholar

    [66] XIN Y Z, LIU Y R, YI M Z, et al. Effect of aluminum ion on rutile flotation[J]. Minerals Engineering, 2023, 55(2): 458−466.

    Google Scholar

    [67] 贾云, 钟宏, 王帅, 等. 捕收剂的分子设计与绿色合成[J]. 中国有色金属学报, 2020, 30(2): 456−466.

    Google Scholar

    JIA Y, ZHONG H, WANG S, et al. Molecular design and green synthesis of collector[J]. Chinese Journal of Nonferrous Metals, 2020, 30(2): 456−466.

    Google Scholar

    [68] YONGCHAO M, SHUMING W, QI Z, et al. Co−adsorption of NaOL/SHA composite collectors on cassiterite surfaces and its effect on surface hydrophobicity and floatability[J]. Separation and Purification Technology, 2023, 308(21): 2451−2459.

    Google Scholar

    [69] CHEN Y, LI H, FENG D, et al. A recipe of surfactant for the flotation of fine cassiterite particles[J]. Minerals Engineering, 2021, 160(14): 241−249.

    Google Scholar

    [70] SI Y Y, YAN L X, CHENG L, et al. Investigations on the synergistic effect of combined NaOl/SPA collector in ilmenite flotation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628(21): 354−361.

    Google Scholar

    [71] 刘杰, 宫贵臣, 韩跃新. 有机抑制剂对微细粒锡石可浮性的影响[J]. 中国矿业大学学报, 2016, 45(3): 610−614.

    Google Scholar

    LIU J, GONG G C, HAN Y X. Effect of organic inhibitors on the floatability of fine cassiterite[J]. Journal of China University of Mining and Technology, 2016, 45(3): 610−614.

    Google Scholar

    [72] LIJIA Z, JIE L, YIMIN Z, et al. Mechanism of HCA and CEPPA in flotation separation of cassiterite and fluorite[J]. Minerals Engineering, 2022, 187(16): 154−163.

    Google Scholar

    [73] HU Y, YING L H, ZHANG Y, et al. Flotation separation of cassiterite and chlorite using carboxymethyl cellulose as a depressant[J]. Physicochemical Problems of Mineral Processing, 2022, 58(6): 1345−1353.

    Google Scholar

    [74] XUN W, JIE L, YIMIN Z, et al. The application and mechanism of high−efficiency depressant Na2ATP on the selective separation of cassiterite from fluorite by direct flotation[J]. Minerals Engineering, 2021, 169(22): 1342−1351.

    Google Scholar

    [75] XUN W, JIE L, YIMIN Z, et al. Adsorption and depression mechanism of an eco−friendly depressant PBTCA on fluorite surface for the efficient separation of cassiterite from fluorite[J]. Minerals Engineering, 2021, 171(12): 341−352.

    Google Scholar

    [76] GUAN F Z, DONG M Z. Enhanced flotation eparation of cassiterite from calcite using metal−inorganic complex depressant[J]. Minerals, 2021, 11(8): 321−331.

    Google Scholar

    [77] JING F H, HAO C, MING M Z, et al. Combined inhibitors of Fe3+, Cu2+ or Al3+ and sodium silicate on the flotation of fluorite and quartz[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 643(12): 124−131.

    Google Scholar

    [78] RUO L W, HONG L Z, WEN J S, et al. The inhibiting effect of Pb−starch on chlorite flotation and its adsorption configuration based on DFT computation[J]. Applied Surface Science, 2023, 610(23): 351−362.

    Google Scholar

    [79] WANG M, JIN S. Utilization of phytic acid as a selective depressant for quartz activated by zinc ions in smithsonite flotation[J]. Molecules, 2023, 28(14): 5361−5369. doi: 10.3390/molecules28145361

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(335) PDF downloads(19) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint