Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 5
Article Contents

CHEN Haijun, XIE Haiyun, CHEN Jialing, JIN Yanling, ZENG Peng, SONG Zixin, ZHANG Qunli, LIU Dianwen. Research Progress of Flotation Collectors for Lead−Zinc Oxide Ore[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 42-53. doi: 10.13779/j.cnki.issn1001-0076.2023.05.005
Citation: CHEN Haijun, XIE Haiyun, CHEN Jialing, JIN Yanling, ZENG Peng, SONG Zixin, ZHANG Qunli, LIU Dianwen. Research Progress of Flotation Collectors for Lead−Zinc Oxide Ore[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 42-53. doi: 10.13779/j.cnki.issn1001-0076.2023.05.005

Research Progress of Flotation Collectors for Lead−Zinc Oxide Ore

More Information
  • Lead−zinc oxide ore is an important mineral resource in China, and its separation is difficult. Because of its complex mineral composition, large mud content, and fine dissemination size. Base on summarizing the surface characteristics of lead−zinc oxide ore, the mechanism and application of direct flotation of lead−zinc oxide ore such as fatty acid collector, chelating collector and amphoteric collector were summarized, as well as the mechanism and application of sulfide flotation of lead−zinc oxide ore such as sulfide−xanthate, sulfide−amine salt and sulfide−xanthate−amine salt. Finally, it was pointed out that strengthening the research on the mechanism of collectors, exploring the modification and compounding technology of collectors, and developing novel and combined collectors with high selectivity are the research focus of flotation of lead−zinc oxide ore.

  • 加载中
  • [1] MASDARIAN M, AZIZI A, BAHRI Z. Mechanochemical sulfidization of a mixed oxide−sulphide copper ore by co−grinding with sulfur and its effect on the flotation efficiency[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 743−748. doi: 10.1016/j.cjche.2019.10.005

    CrossRef Google Scholar

    [2] USGS. Mineral Commodity Summaries 2022[R]. 2022.

    Google Scholar

    [3] GROUP I L A Z S. World directory of lead and zinc mines[R]. 2021.

    Google Scholar

    [4] 曾茂青, 孙广周, 叶家笋. 新型捕收剂KZ在氧化铅锌矿浮选中的应用[J]. 矿冶, 2014, 23(6): 9−13.

    Google Scholar

    ZENG M Q, SUN G Z, YE J S. The application of the new collector KZ in oxide lead−zinc flotation[J]. Mining and Metallurgy, 2014, 23(6): 9−13.

    Google Scholar

    [5] 刘生长. 富氧侧吹炉处理铅锌氧化原矿工艺的设计研究[J]. 湖南有色金属, 2018, 34(3): 24−26.

    Google Scholar

    LIU S C. Design of oxygen−enrichen slide−blown smelting process for oxidized lead−zinc deposit[J]. Hu’nan Nonferrous Metals, 2018, 34(3): 24−26.

    Google Scholar

    [6] 丰奇成. 白铅矿氯离子强化硫化浮选试验及机理研究[D]. 昆明: 昆明理工大学, 2016.

    Google Scholar

    FENG Q C. Study on chloride ion enhanced sulfide flotation test and mechanism of cerussite[D]. Kunming: Kunming University of Science and Technology, 2016.

    Google Scholar

    [7] 张亚东. 低品位氧化锌矿和硫氧混合锌矿矿相重构与浸出的研究[D]. 昆明: 昆明理工大学, 2016.

    Google Scholar

    ZHANG Y D. Study on phase reconstruction and leaching of low−grade zinc oxide ore and sulfur−oxygen mixed zinc ore [D]. Kunming: Kunming University of Science and Technology, 2016.

    Google Scholar

    [8] 王纪镇, 孙兆辉, 白俊智. 菱锌矿晶体各向异性与表面性质研究[J]. 矿产保护与利用, 2021, 41(2): 1−6.

    Google Scholar

    WANG J Z, SUN Z H, BAI J Z. Research on crystal anisotropy and surface properties of smithsonite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 1−6.

    Google Scholar

    [9] 邓攀. 某氧硫混合铅锌矿选矿试验研究[J]. 现代矿业, 2022, 38(11): 120−123.

    Google Scholar

    DENG P. Experimental study on beneficiation of an oxysulfide mixed lead−zinc ore[J]. Modern Mining, 2022, 38(11): 120−123.

    Google Scholar

    [10] 张涛. 某冶炼厂锌浸出渣中残余离子对铅矾回收的影响与消除方法研究[D]. 武汉: 武汉科技大学, 2016.

    Google Scholar

    ZHANG T. A dissertation submitted in partial fulfillment of the requirements for the degree of master in engineering[D]. Wuhan: Wuhan University of Science and Technology, 2016.

    Google Scholar

    [11] 李来顺. 硫化—胺法浮选菱锌矿的理论与工艺研究[D]. 长沙: 中南大学, 2013.

    Google Scholar

    LI L S. Study on theory and process of sulphidizing−amination flotation of smithsonite[D]. Changsha: Central South University, 2013.

    Google Scholar

    [12] 韩聪, 魏德洲, 沈岩柏, 等. 十二胺体系中异极矿和菱锌矿的浮选行为[J]. 东北大学学报(自然科学版), 2016, 37(11): 1582−1587.

    Google Scholar

    HAN C, WEI D Z, SHEN Y B, et al. Flotation behavior of hemimorphite and smithsonite in dodecylamine system[J]. Journal of Northeastern University (Natural Science Edition), 2016, 37(11): 1582−1587.

    Google Scholar

    [13] 杨婕. 两性捕收剂的合成及其浮选性能研究[D]. 武汉: 武汉工程大学, 2016.

    Google Scholar

    YANG J. The synthesis and flotation performance of amphoteric collector[D]. Wuhan: Wuhan Institute of Technology, 2016.

    Google Scholar

    [14] 韦迪, 李智力, 李进, 等. 氧化矿常温浮选脂肪酸类捕收剂的研究现状[J]. 有色金属(选矿部分), 2023, 23(2): 161−172.

    Google Scholar

    WEI D, LI Z L, LI J, et al. Research status of fatty acid collectors for flotation of oxidation ore at ambient temperature[J]. Nonferrous Metals (Mineral Processing Section), 2023, 23(2): 161−172.

    Google Scholar

    [15] COOK B K, GIBSON C E. A review of fatty acid collectors: implications for spodumene flotation[J]. Minerals, 2023, 13(2): 212−213. doi: 10.3390/min13020212

    CrossRef Google Scholar

    [16] 郭姚. 新型分散剂强化含泥菱锌矿浮选行为的研究[D]. 赣州: 江西理工大学, 2022.

    Google Scholar

    GUO Y. Study on flotation behavior of slime−bearing smithsonite enhanced by new dispersant [D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

    Google Scholar

    [17] CAO Q B, ZHOU H, LIU D W, et al. Flotation separation of smithsonite from calcite using an amino−acid collector[J]. Separation and Purification Technology, 2022,281: 119980−119989.

    Google Scholar

    [18] SUN W H, LIU W G, DUAN S J, et al. Inserting EO groups to improve the performance of fatty acid collectors: flotation and adsorption study performed with calcite, dolomite, and quartz[J]. Separation and Purification Technology, 2021, 272: 118952−118960.

    Google Scholar

    [19] 孙伟, 王若林, 胡岳华, 等. 矿物浮选过程中铅离子的活化作用及新理论[J]. 有色金属(选矿部分), 2018(2): 91−98.

    Google Scholar

    SUN W, WANG R L, HU Y H, et al. Activation and new theory of lead ion in minerals flotation process[J]. Nonferrous Metals (mineral processing part), 2018(2): 91−98.

    Google Scholar

    [20] ZHAO L, LIU W G, LIU W B, et al. Investigation on matching relationship between surface characters and collector properties: Achieving flotation separation of zinc oxide minerals from quartz[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126392−126400. doi: 10.1016/j.colsurfa.2021.126392

    CrossRef Google Scholar

    [21] 叶军建, 张覃, 姜毛, 等. 组合捕收剂浮选氧化锌矿试验研究[J]. 有色金属(选矿部分), 2014(6): 46−50.

    Google Scholar

    YE J J, ZHANG Q, JIANG M, et al. Flotation study on zinc oxide ore by using combined collector[J]. Nonferrous Metals(mineral processing part), 2014(6): 46−50.

    Google Scholar

    [22] NAZYM S, RUDOLF B, SERGEY M, et al. Optimization of conditions for processing of lead–zinc ores enrichment tailings of east kazakhstan[J]. Metals, 2021, 11(11): 802−803.

    Google Scholar

    [23] 庞杰. 典型氧化铅锌矿物水热硫化−浮选基础理论研究[D]. 昆明: 昆明理工大学, 2020.

    Google Scholar

    PANG J. Study on the basic theory of hydrothermal sulfidation−flotation of typical lead−zinc oxide minerals[D]. Kunming: Kunming University of Science and Technology, 2020.

    Google Scholar

    [24] 曾宇辉. 苯丙烯基羟肟酸对氧化铅锌矿的浮选特性及机理研究[D]. 赣州: 江西理工大学, 2022.

    Google Scholar

    ZENG Y H. Study on flotation characteristics and mechanism of phenylallyl hydroxamic acid on lead−zinc oxide ore[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

    Google Scholar

    [25] 刘炅. 难选氧化锌矿石全粒级浮选新药剂研究[D]. 南宁: 广西大学, 2019.

    Google Scholar

    LIU J. Study on new reagents for full−size flotation of refractory zinc oxide ore[D]. Nanning: Guangxi University, 2019.

    Google Scholar

    [26] 王祖旭. 用新型螯合捕收剂分选云南某氧化铅锌矿石[J]. 金属矿山, 2014(7): 89−93.

    Google Scholar

    WANG Z X. Application of a new chelating−agent collector on benficiation of a lead−zinc oxide ore in Yunnan[J]. Metal Mine, 2014(7): 89−93.

    Google Scholar

    [27] 朱玉霜, 赵景云, 朱建光. RO−X系列捕收剂浮选氧化铅锌矿试验[J]. 湖南有色金属, 1991(2): 84−90.

    Google Scholar

    ZHU Y S, ZHAO J Y, ZHU J G. RO−X series collectors flotation of lead−zinc oxide ores[J]. Hu’nan Nonferrous Metals, 1991(2): 84−90.

    Google Scholar

    [28] LIU W G, Zhao L, Liu W B, et al. Synthesis and utilization of a gemini surfactant as a collector for the flotation of hemimorphite from quartz[J]. Minerals Engineering, 2019, 134: 394−401.

    Google Scholar

    [29] ZHAO L, LIU W G, Duan H, et al. Sodium carbonate effects on the flotation separation of smithsonite from quartz using N, N′−dilauroyl ethylenediamine dipropionate as a collector[J]. Minerals Engineering, 2018, 126: 1−8.

    Google Scholar

    [30] 蔡锦鹏, 宋凯伟, 申培伦, 等. 滇东某多金属氧化铅锌矿高效回收选矿工艺[J]. 过程工程学报, 2018, 18(3): 612−617.

    Google Scholar

    CAI J P, SONG K W, SHEN P L et al. High efficient recovery of oxidized lead−zinc minerals from a multi−metal ore in the eastern region of Yunnan province[J]. Process Engineering, 2018, 18(3): 612−617.

    Google Scholar

    [31] 巩明辉, 李国栋, 王婷霞. 某高氧化率铅锌矿选矿试验研究[J]. 金属矿山, 2022(5): 117−122.

    Google Scholar

    GONG M H, LI G D, WANG T X. Experimental study on beneficiation of a lead−zinc ore with high oxidation rate[J]. Metal Mine, 2022(5): 117−122.

    Google Scholar

    [32] ZHANG M, HUANG L Y, SUN X, et al. A new perspective on copper oxide flotation: Synthesis and mechanism study of a surfactant for sulfide−free flotation[J]. Inorganic Chemistry Communications, 2023, 155: 110990−110999. doi: 10.1016/j.inoche.2023.110990

    CrossRef Google Scholar

    [33] QI Z, YANG J, SHI Y, et al. Activating hemimorphite using a sulfidation−flotation process with sodium sulfosalicylate as the complexing agent[J]. Journal of Materials Research and Technology, 2020, 9(5): 10110−10120. doi: 10.1016/j.jmrt.2020.07.005

    CrossRef Google Scholar

    [34] LIU R Z, LIU D W, LI J L, et al. Improved understanding of the sulfidization mechanism in cerussite flotation: An XPS, TOF−SIMS and FESEM investigation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595: 124508−124515. doi: 10.1016/j.colsurfa.2020.124508

    CrossRef Google Scholar

    [35] 刘思言. 白铅矿硫化浮选硫化膜表面形貌及晶相结构初探[D]. 昆明: 昆明理工大学, 2020.

    Google Scholar

    LIU S Y. Preliminary study on the surface morphology and crystal structure of sulfide film in sulfidation flotation of cerussite[D]. Kunming: Kunming University of Science and Technology, 2020.

    Google Scholar

    [36] XUE J W, QU Y B, CHEN Y, et al. Effective sulfide flotation of cerussite by using trithiocyanuric acid as a novel sulfurizing reagent[J]. Minerals Engineering, 2023, 198: 108087−108093.

    Google Scholar

    [37] 朱国庆, 郭顺磊, 常慕远. 某难选氧化铅锌矿选矿试验研究[J]. 矿冶工程, 2014, 34(z1): 163−165.

    Google Scholar

    ZHU G Q, GUO S L, CHAN M Y. Experimental study on beneficiation of a refractory lead−zinc oxide ore[J]. Mining and Metallurgical Engineering, 2014, 34(z1): 163−165.

    Google Scholar

    [38] 毛益林, 陈晓青, 杨进忠, 等. 某复杂难选氧化铅锌矿选矿试验研究[J]. 矿产综合利用, 2011(1): 6−10.

    Google Scholar

    MAO Y L, CHEN X Q, YANG J Z, et al. Experimental research on mineral processing technology for separating a complex and refractory oxide lead—zinc ore[J]. Comprehensive Utilization of Minerals, 2011(1): 6−10.

    Google Scholar

    [39] LIU C, ZHANG W, SONG S, et al. A novel insight of the effect of sodium chloride on the sulfidization flotation of cerussite[J]. Powder Technology, 2019, 344: 103−107. doi: 10.1016/j.powtec.2018.12.002

    CrossRef Google Scholar

    [40] 曾鹏, 谢海云, 晋艳玲, 等. 典型铜铅锌氧化矿的强化硫化浮选研究进展[J]. 矿冶, 2022, 31(2): 22−28.

    Google Scholar

    ZENG P, XIE H Y, JIN Y L, et al. Research progress of enhanced sulfide flotation for typical copper−lead−zinc oxide ores[J]. Mining & Metallurgy, 2022, 31(2): 22−28.

    Google Scholar

    [41] 沈同喜. 氧化铅矿硫化浮选强化技术研究[D]. 赣州: 江西理工大学, 2013.

    Google Scholar

    SHEN T X. Study on sulfide flotation strengthening technology of lead oxide ore [D]. Ganzhou: Jiangxi University of Science and Technology, 2013.

    Google Scholar

    [42] DENG R D, WANG Y, DUAN W T, et al. Induced crystallization of Pb2+ on smithsonite surface during sulfidation−xanthate flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129576−129585.

    Google Scholar

    [43] 毛志丹, 谢克强, 孔德全, 等. 云南某复杂硫、氧混合铅锌矿浮选实验研究[J]. 矿冶工程, 2021, 41(6): 34−37.

    Google Scholar

    MAO Z D, XIE K Q, KONG D Q, et al. Flotation of mixed sulfide−oxide lead and zinc ore from Yunnan[J]. Mining and Metallurgical Engineering, 2021, 41(6): 34−37.

    Google Scholar

    [44] 李文雅. 郴州某铅锌矿的浮选分离试验研究[J]. 科技风, 2017(11): 130−131.

    Google Scholar

    LI W T. Experimental study on flotation separation of a lead−zinc mine in Chenzhou[J]. Technology Wind, 2017(11): 130−131.

    Google Scholar

    [45] 朱亚光, 张周位, 黄苑龄. 贵州织金某铅锌矿石浮选试验[J]. 现代矿业, 2018, 34(4): 109−111+114.

    Google Scholar

    ZHU Y G, ZHANG Z W, HUANG W L. Flotation test of a lead−zinc ore in Zhijin, Guizhou[J]. Modern Mining, 2018, 34(4): 109−111+114.

    Google Scholar

    [46] WANG M T, ZHANG G F, CHEN Y F, et al. Effect of surface oxidization on quartz slime coating in the sulfidization−amine flotation of smithsonite[J]. Minerals Engineering, 2022, 188: 107847−107854. doi: 10.1016/j.mineng.2022.107847

    CrossRef Google Scholar

    [47] 许大洪, 陈晔. 高硅型异极矿硫化—胺类捕收剂浮选机理研究[J]. 矿产保护与利用, 2022, 42(1): 28−33.

    Google Scholar

    XU D H, CHEN Y. Study on sulfide−amine flotation mechanism of hemimorphite with high content of silicon[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 28−33.

    Google Scholar

    [48] 方浩. 十八胺作用下Pb 2+强化异极矿浮选试验及机理研究[D]. 赣州: 江西理工大学, 2018.

    Google Scholar

    FANG H. The Pb2+ enhance flotation of hemimorphite while octadecylamine as collector and its mechanism[D]. Ganzhou: Jiangxi University of Science and Technology, 2018.

    Google Scholar

    [49] 李来顺. 硫化—胺法浮选菱锌矿的理论与工艺研究[D]. 长沙: 中南大学, 2013.

    Google Scholar

    LI L S. Theoretical and technological study on flotation of smithsonite by sulfidation−amine method [D]. Changsha: Central South University, 2013.

    Google Scholar

    [50] 靳晨曦, 马子龙, 曹亦俊, 等. 极低品位泥质难选氧化锌矿浮选试验研究[J]. 矿产综合利用, 2017(1): 70−75.

    Google Scholar

    JIN C X, MA Z L, CAO Y J, et al. Flotation study on separating the extremely low−grade and argillaceous refractory oxide zinc[J]. Comprehensive Utilization of Minerals, 2017(1): 70−75.

    Google Scholar

    [51] 谢丹丹. 四川会理难选氧化铅锌矿选矿试验研究[D]. 昆明: 昆明理工大学, 2018.

    Google Scholar

    XIE D D. Experimental study on beneficiation of refractory lead−zinc oxide ore in Huili, Sichuan[D]. Kunming: Kunming University of Science and Technology, 2018.

    Google Scholar

    [52] 陈晔, 陈建华, 覃华. 胺类捕收剂对异极矿等4种矿物浮选行为的影响[J]. 矿业研究与开发, 2008(1): 32−34.

    Google Scholar

    CHEN Y, CHEN J H, QIN H. Effect of amine collectors on flotation behavior of four minerals such as hemimorphite[J]. Mining Research and Development, 2008(1): 32−34.

    Google Scholar

    [53] 张万忠. 白铅矿和菱锌矿的辅助捕收剂研究[D]. 沈阳: 东北大学, 2018.

    Google Scholar

    Zhang W Z. Investigation on auxiliary collectors of cerussite and smithsonite[D]. Shenyang: Northeast University, 2018.

    Google Scholar

    [54] 余江鸿, 周涛, 刘守信. 四川甘洛县某氧化铅锌矿石选矿试验研究[J]. 金属矿山, 2009(12): 77−79+98.

    Google Scholar

    YU J H, ZHOU T, LIU S X. Experimental study on beneficiation of a lead−zinc oxide ore in Ganluo County, Sichuan Province[J]. Metal Mine, 2009(12): 77−79+98.

    Google Scholar

    [55] 王美丽. 铅离子在菱锌矿表面的吸附特性及其对硫化浮选的影响机制[D]. 昆明: 昆明理工大学, 2022.

    Google Scholar

    WANG M L, Adsorption characteristics of lead ions on the surface of smithsonite and its influence mechanism on sulfide flotation[D]. Kunming: Kunming University of Science and Technology, 2022.

    Google Scholar

    [56] XING D Q, HUANG Y Q, LIN C S, et al. Strengthening of sulfidization flotation of hemimorphite via fluorine ion modification[J]. Separation and Purification Technology, 2021, 269: 118769−118778. doi: 10.1016/j.seppur.2021.118769

    CrossRef Google Scholar

    [57] HAN J H, LI X A, DAI S J, et al. The flotation separation of magnesite and limonite using an amine collector[J]. Adsorption Science & Techmology, 2021, 2021(5534274): 1−12.

    Google Scholar

    [58] 宋凯伟. 氧硫混合锌矿氨铵溶蚀−活化浮选机理与工艺[D]. 昆明: 昆明理工大学, 2021.

    Google Scholar

    SONG K W. Mechanism and process of ammonium ammonia dissolution−activation flotation for mixed zinc oxide−sulfur ore[D]. Kunming: Kunming University of Science and Technology, 2021.

    Google Scholar

    [59] 冉金城, 刘全军, 张治国, 等. 腾冲高泥氧化锌矿选矿实验研究[J]. 过程工程学报, 2015, 15(4): 559−566.

    Google Scholar

    RAN J C, LIU Q J, ZHAO Z G, et al. Research on concentration of zinc oxide ore with high content slime from Tengchong[J]. Journal of Process Engineering, 2015, 15(4): 559−566.

    Google Scholar

    [60] 陈锦全, 周德炎, 魏宗武, 等. 高铁泥化氧化铅锌矿的浮选试验研究[J]. 矿业研究与开发, 2007(5): 50−51+93.

    Google Scholar

    CHEN J Q, ZHOU D Y, WEI Z W, et al. Experimental study on flotation of high iron mud lead−zinc oxide ore[J]. Mining Research and Development, 2007(5): 50−51+93.

    Google Scholar

    [61] 李红侠, 卫亚儒. 某微细嵌布氧化铅锌矿选矿工艺研究[J]. 中国矿山工程, 2017, 46(2): 27−30.

    Google Scholar

    LI H X, WEI Y R. Study on mineral separation technology of a fine dissemination lead−zinc oxide ore[J]. China Mine Engineering, 2017, 46(2): 27−30.

    Google Scholar

    [62] 孙广周, 王德英, 罗兴, 等. 新型组合捕收剂浮选氧化铅矿试验研究[J]. 矿产保护与利用, 2012, 26(1): 26−29.

    Google Scholar

    SUN G Z, WANG D Y, LUO X, et al. The research on flotation of a lead oxide ore using new combined collectors[J]. Conservation and Utilization of Mineral Resources, 2012, 26(1): 26−29.

    Google Scholar

    [63] MONTE M B, PIMETEL D A, ALBUQUERQUE M D, et al. Synergism of mixed cationic collectors in the flotation of quartz unveiled by AFM, solution chemistry and quantum chemical calculations[J]. Journal of Molecular Liquids, 2023, 376: 121397−121409.

    Google Scholar

    [64] GAO Z Y, DING B, SUN W, et al. Selective flotation of scheelite from calcite and fluorite using a collector mixture[J]. Minerals Engineering, 2015, 72: 23−26. doi: 10.1016/j.mineng.2014.12.025

    CrossRef Google Scholar

    [65] JIN J X, GAO H M, CHEN X M, et al. The flotation of aluminosilicate polymorphic minerals with anionic and cationic collectors[J]. Minerals Engineering, 2016, 99: 123−132. doi: 10.1016/j.mineng.2016.08.005

    CrossRef Google Scholar

    [66] 曹世明. 硅质氧化锌矿活化浮选机理研究[D]. 昆明: 昆明理工大学, 2014.

    Google Scholar

    CAO S M. Study on activation flotation mechanism of siliceous zinc oxide ore[D]. Kunming: Kunming University of Science and Technology, 2014.

    Google Scholar

    [67] 陈园园, 文金磊. 高泥高氧化率氧化铅锌矿浮选工艺研究[J]. 湖南有色金属, 2022, 38(6): 13−16+72.

    Google Scholar

    CHEN Y Y, WEN J L. Study on flotation process of oxidized lead−zinc ore with high mud and high oxidation rate[J]. Hunan Nonferrous Metals, 2022, 38(6): 13−16 + 72.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(507) PDF downloads(74) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint