Citation: | GUO Hongchen, XIAO Qingfei, LI Yunxiao, ZHOU Qiang, LIU Xiangyang. Comparative Experimental Study of Multi−stage Ball Distribution to Improve the Efficiency of Semi−autogenous Grinding[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 60-67. doi: 10.13779/j.cnki.issn1001-0076.2023.04.006 |
A single Φ150 mm steel ball media size in a semi−autogenous grinding ball mill in an iron ore plant in Panzhihua, Sichuan does not match the feed size and the mechanical properties of the ore, and the single steel ball size leads to high mill energy consumption and low efficiency.The maximum ball diameter of 150 mm was determined by using Bond Gong ball mill index test and Azzaroni formula, and the recommended steel ball grading of m(Ф150 mm)∶m(Ф120 mm)=1∶2 was verified to be the best by grinding test in a small mill with D×L 450×450 mm. The recommended steel ball gradation was finally confirmed to be the best. In this study, the results of laboratory grinding tests showed that the recommended steel ball grading reduced the stubborn yield by 0.32 percentage points and increased the yield of γ-0.074 mm by 3.20 percentage points compared with the on-site steel ball grading; the results of discrete element (DEM) simulation experiments showed that the recommended steel ball grading increased the tangential collision energy utilization by 2.98 percentage points and the normal collision energy utilization by 1.90 percentage points compared with the on−site steel ball grading. The results of discrete element (DEM) simulation experiments show that the recommended ball gradation has improved the tangential collision energy utilization by 2.98 percentage points, the normal collision energy utilization by 1.90 percentage points, and the collision energy to the liner plate by 306.9 J. Thus, it is verified that multi−stage ball gradation can improve the energy utilization of semi−autogenous grinding ball mill.
[1] | 母福生. 破碎及磨矿技术在国内外的技术发展和行业展望(一)[J]. 矿山机械, 2011(11): 58−65. doi: 10.16816/j.cnki.ksjx.2011.11.016 MU F S. Technical development and industry outlook of crushing and grinding technology at home and abroad (I)[J]. Mining Machinery, 2011(11): 58−65. doi: 10.16816/j.cnki.ksjx.2011.11.016 |
[2] | BARRERA D, CERRILLO L, GONGORA F, et al. Design of a wear estimator for liners in SAG mills using ANFIS modeling[C]//IEEE International Conference on Automation/Congress of the Chilean Association of Automatic Control. IEEE, 2021. DOI:10. 1109/ICAACCA51523. 2021. 9465187. |
[3] | A A R H, B M M, C H Z, et al. On dry SAG mills end liners: Physical modeling, DEM−based characterization and industrial outcomes of a new design[J]. Minerals Engineering, 2019, 141: 105835. doi: 10.1016/j.mineng.2019.105835 |
[4] | 许鸿国, 曾军龙, 李杨, 等. 顽石处理对半自磨机产能的影响[J]. 中国钼业, 2021, 45(3): 31−34. doi: 10.13384/j.cnki.cmi.1006-2602.2021.03.008 XU H G, ZENG J L, LI Y, et al. Effect of recalcitrant treatment on the capacity of semi−autogenous mills[J]. China Molybdenum Industry, 2021, 45(3): 31−34. doi: 10.13384/j.cnki.cmi.1006-2602.2021.03.008 |
[5] | 肖贤煌. 基于统计力学原理的半自磨机衬板结构优化设计[D]. 赣州: 江西理工大学, 2017. XIAO X H. Optimization design of semi−autogenous mill liner structure based on statistical mechanics principle[D]. Ganzhou: Jiangxi University of Technology, 2017. |
[6] | 徐汉龙. 简用拉苏莫夫公式的方法及效果分析[C]//中国硅酸盐学会科普工作委员会, 建筑材料工业技术情报研究所, 建筑材料工业技术监督研究中心, 等. 2013国内外水泥粉磨新技术交流大会暨展览会论文集. 中国新闻联合出版社(China News United Publisher), 2013: 5. XU H L. Method and effect analysis of simple use of Rasumov's formula[C]//Science Popularization Working Committee of China Silicate Society, Institute of Technical Information of Building Materials Industry, Research Center for Technical Supervision of Building Materials Industry, International Cement and Concrete Network. Proceedings of the 2013 Domestic and International Conference and Exhibition on the Exchange of New Technology of Cement Grinding. China News United Publisher, 2013: 5. |
[7] | 李启衡. 碎矿与磨矿[M[. 北京: 冶金工业出版社, 1980: 131-150. LI Q H. Ore crushing and grinding [M[. Beijing: Metallurgical Industry Press, 1980: 131-150. |
[8] | 段希祥. 球磨机钢球尺寸的理论计算研究[J]. 中国科学(A辑 数学 物理学 天文学 技术科学), 1989(8): 856−863. DUAN X X. Theoretical calculation of ball mill ball size[J]. Science in China (Series A Mathematics, Physics, Astronomy and Technical Sciences), 1989(8): 856−863. |
[9] | 宗路, 李旭, 蔡改贫, 等. 基于响应曲面法的半自磨机磨矿能耗研究[J]. 化工矿物与加工, 2018, 47(4): 18−21+53. doi: 10.16283/j.cnki.hgkwyjg.2018.04.006 ZONG L, LI X, CAI G P, et al. Research on grinding energy consumption of semi−autogenous mill based on response surface method[J]. Chemical Minerals and Processing, 2018, 47(4): 18−21+53. doi: 10.16283/j.cnki.hgkwyjg.2018.04.006 |
[10] | 尹自信. 球磨机铁矿石颗粒破碎及粒度分布行为研究[D]. 徐州: 中国矿业大学, 2020. YIN Z X. Research on particle crushing and particle size distribution behavior of iron ore in ball mill[D]. Xuzhou: China University of Mining and Technology, 2020. |
[11] | PENG Y X, NI X, ZHU Z C, et al. Friction and wear of liner and grinding ball in iron ore ball mill[J]. Tribology International, 2017: 506–517. DOI:10.1016/j. triboint. 2017. 06. 017. |
[12] | 王二锋, 张亮, 张颖新, 等. 河北某铁矿邦德球磨功指数的测定[J]. 河南科技, 2019(7): 102−106. doi: 10.3969/j.issn.1003-5168.2019.07.041 WANG E F, ZHANG L, ZHANG Y X, et al. Determination of Bond ball milling power index in an iron ore mine in Hebei[J]. Henan Science and Technology, 2019(7): 102−106. doi: 10.3969/j.issn.1003-5168.2019.07.041 |
[13] | 全国信息与文献标准化技术委员会. 文献著录: 第4部分非书资料: GB/T 26567-2011[S]. 北京: 中国标准出版社, 2010: 3. National Information and Documentation Standardization Technical Committee. Documentation: Part 4 Non−book materials: GB/T 26567-2011)[S]. Beijing: China Standard Press, 2010: 3. |
[14] | 黄国智, 方启学, 任翔, 等. 全自磨半自磨磨矿技术[M]. 北京: 冶金工业出版社, 2018: 226-230. HUANG G Z, FANG Q X, REN X, et al. Fully autogenous semiautogenous grinding technology[M]. Beijing: Metallurgical Industry Press, 2018: 226-230. |
[15] | 武煜凯, 肖庆飞, 高志勇. 多级配球降低半自磨中顽石积累及改善磨矿效果试验[J]. 稀有金属, 2022(5): 46. doi: 10.13373/j.cnki.cjrm.XY20120018 WU Y K, XIAO Q F, GAO Z Y. Reduction of recalcitrant accumulation and improvement of grinding effect in semi−autogenous grinding by multi−stage ball allocation[J]. Rare Metals, 2022(5): 46. doi: 10.13373/j.cnki.cjrm.XY20120018 |
[16] | MINDLIN R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics, 1949, 16: 259−268. doi: 10.1007/978-1-4613-8865-4_24 |
[17] | MAIO F, RENZO A D. Modelling particle contacts in distinct element simulations: linear and non−linear approach[J]. Chemical Engineering Research & Design, 2005, 83(11): 1287−1297. |
[18] | CLEARY P W. Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods[J]. Minerals Engineering, 1998. DOI:10.1016/S0892-6875(98)00093-4. |
[19] | CLEARY P W, MORRISON R D. Comminution mechanisms, particle shape evolution and collision energy partitioning in tumbling mills[J]. Minerals Engineering, 2016, 86: 75−95. doi: 10.1016/j.mineng.2015.12.006 |
[20] | CAPECE M, BILGILI E, R DAVé. Insight into first−order breakage kinetics using a particle-scale breakagerate constant[J]. Chemical Engineering Science, 2014, 117(1): 318−330. |
Particle size characteristic curve of feed
Test sample final grinding product size characteristic curve
Comprehensive indexes of grinding products with different grinding media grades
Movement of semi-self-grinding particles under field grading and recommended grading: (a) Φ150 mm steel balls (b) m(Φ150 mm)∶m(Φ120 mm)=1∶2 steel balls
Tangential collision energy spectrum of hard rock particles with different steel ball grading: (a) Field grading; (b) Recommended grading
Normal collision energy spectrum of hard rock particles with different steel ball grading (a)Field grading(b)Recommended grading