Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

YANG Wei, CHANG Dong, LONG Tao, DENG Sha. Research Progress on the Resource Utilization of Gold Tailings[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 168-178. doi: 10.13779/j.cnki.issn1001-0076.2023.03.020
Citation: YANG Wei, CHANG Dong, LONG Tao, DENG Sha. Research Progress on the Resource Utilization of Gold Tailings[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 168-178. doi: 10.13779/j.cnki.issn1001-0076.2023.03.020

Research Progress on the Resource Utilization of Gold Tailings

More Information
  • The massive accumulation of gold tailings not only occupies valuable land resources, but also has great security risks. These tailings contain high content metallic elements and non-metallic minerals, which has great recovery value and resource utilization prospect. Aiming at the resource utilization of gold tailings, the technical path and technological characteristics of recovering valuable metals such as gold, iron and lead and non-metallic minerals such as quartz, feldspar and sericite from gold tailings were described in detail. The technical scheme of activated gold tailings used as cementation material for filling mining area was analyzed. Meanwhile, the preparation of concrete, sintered brick, ceramite, foam ceramics and other building materials from gold tailings was discussed. Finally, the existing problems and research development direction of gold tailings resource utilization were reviewed.

  • 加载中
  • [1] 佚名. 全国矿产资源储量统计表[R]. 北京: 自然资源部, 2021.

    Google Scholar

    YI M. Statistical table of national mineral resources reserves[R]. Beijing: Ministry of Natural Resources, 2021.

    Google Scholar

    [2] 佚名. 2022年中国尾矿综合利用行业全景分析[Z]. 智研咨询(www. chyxx. com. ), 2022.

    Google Scholar

    ANONYMITY. Panoramic analysis of the comprehensive utilization of Chinese tailings industry in 2022[Z]. Zhiyan Consulting (www. chyxx. com. ), 2022.

    Google Scholar

    [3] 陈兰兰, 卢东方, 王毓华. 黄金矿山尾矿的组成, 危害及资源化利用技术[J]. 矿产保护与利用, 2020, 40(5): 161−169.

    Google Scholar

    CHEN L L, LU D F, WANG M H. Composition, harm and resource utilization technology of gold mine tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 161−169.

    Google Scholar

    [4] 迟崇哲, 翟菊彬, 兰馨辉, 等. 黄金尾矿综合利用分析[J]. 黄金, 2022, 43(2): 100−103.

    Google Scholar

    CHI C Z, ZHAI J B, LAN X H, et al. Analysis of comprehensive utilization of gold tailings[J]. Gold, 2022, 43(2): 100−103.

    Google Scholar

    [5] 黄宗祥, 徐伟. 秀山县生态环境问题及对策措施[J]. 三峡环境与生态, 2009, 2(6): 1−3.

    Google Scholar

    HUANG Z X, XU W. The ecological environment problems of Xiushan country and the countermeasures[J]. Environment and ecology of the Three Gorges, 2009, 2(6): 1−3.

    Google Scholar

    [6] WANG P, SUN Z H, HU Y, et al. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact[J]. Science of the Total Environment, 2019, 695: 133893. doi: 10.1016/j.scitotenv.2019.133893

    CrossRef Google Scholar

    [7] HUANG Z, JIANG L, WU P, et al. Leaching characteristics of heavy metals in tailings and their simultaneous immobilization with triethylenetetramine functioned montmorillonite (TETA-Mt) against simulated acid rain[J]. Environmental Pollution, 2020, 266: 115236. doi: 10.1016/j.envpol.2020.115236

    CrossRef Google Scholar

    [8] 童雄, 吕昊子. 近年来国外尾矿再选与治理的研究[J]. 矿产综合利用, 2014, 186(2): 20−24.

    Google Scholar

    TONG X, LV H Z. Research on reconcentration and disposal of tailings abroad in recent years[J]. Multipurpose Utilization of Mineral Resources, 2014, 186(2): 20−24.

    Google Scholar

    [9] SARI M, YILMAZ E, KASAP T. Long-term ageing characteristics of cemented paste backfill: Usability of sand as a partial substitute of hazardous tailings[J]. Journal of Cleaner Production, 2023, 401: 136723. doi: 10.1016/j.jclepro.2023.136723

    CrossRef Google Scholar

    [10] LICSKOI, LOIS L, SZEBENYI G. Tailings as a source of environmental pollution[J]. Water Science and Technology, 1999, 39(10/11): 333−336. doi: 10.2166/wst.1999.0677

    CrossRef Google Scholar

    [11] YI Z, SUN H, WEI X, et al. Iron ore tailings used for the preparation of cementitious material by compound thermal activation[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(3): 355−358. doi: 10.1016/S1674-4799(09)60064-9

    CrossRef Google Scholar

    [12] 佚名. 应急管理部发布《防范化解尾矿库安全风险工作方案》[J]. 江西建材, 2020, 255(4): 1−3.

    Google Scholar

    YI M. The ministry of emergency management issued the work plan on preventing and resolving tailings pond safety risks[J]. Jiangxi Building Materials, 2020, 255(4): 1−3.

    Google Scholar

    [13] 孙旭东, 刘晓敏, 龚裕, 等. 黄金尾矿建材化利用的研究现状及展望[J]. 金属矿山, 2020, 525(3): 12−22.

    Google Scholar

    SUN X D, LIU X M, GONG Y, et al. Research status and prospects for the utilization of gold tailings as building materials[J]. Metal Mine, 2020, 525(3): 12−22.

    Google Scholar

    [14] WANG J, XING Y, LI P, et al. Chemically-assisted phytoextraction from metal (loid) s-polluted soil at a typical carlin-type gold mining area in southwest China[J]. Journal of Cleaner Production, 2018, 189: 612−619. doi: 10.1098/rsta.2022.0166

    CrossRef Google Scholar

    [15] MAO J W, ZHOU Y M, LIU H. Metallogenic setting and ore genetic model for the Beiya porphyry-skarn polymetallic Au orefield, western Yunnan, China[J]. Ore Geology Reviews, 2017, 86: 21−34. doi: 10.1016/j.oregeorev.2017.02.003

    CrossRef Google Scholar

    [16] 胡术刚, 尚修宇, 初慧. 金矿尾矿综合利用途径研究与展望[J]. 世界环境, 2018, 174(5): 26−30.

    Google Scholar

    HU S G, SHANG X Y, CHU H. Study and prospects of the approach of comprehensive utilization of gold tailings[J]. World environment, 2018, 174(5): 26−30.

    Google Scholar

    [17] 金英豪, 邢万芳, 姚香. 黄金尾矿综合利用技术[J]. 有色矿冶, 2006, 22(5): 16−19. doi: 10.3969/j.issn.1007-967X.2006.05.006

    CrossRef Google Scholar

    JIN Y H, XING W F, YAO X. Technology of comprehensive utilization of gold mining[J]. Non-Ferrous Mining and Metallurgy, 2006, 22(5): 16−19. doi: 10.3969/j.issn.1007-967X.2006.05.006

    CrossRef Google Scholar

    [18] EDRAKI M, BAUMGARTL T, MANLAPIG E, et al. Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches[J]. Journal of Cleaner Production, 2014, 84: 411−420. doi: 10.1016/j.jclepro.2014.04.079

    CrossRef Google Scholar

    [19] 闫晓慧, 李桂春, 孟齐. 金矿中提金技术的研究进展[J]. 应用化工, 2019, 48(11): 2719−2723. doi: 10.3969/j.issn.1671-3206.2019.11.042

    CrossRef Google Scholar

    YAN X H, LI J C, MENG Q. Research progress of gold extraction technology in gold deposits[J]. Applied Chemical Industry, 2019, 48(11): 2719−2723. doi: 10.3969/j.issn.1671-3206.2019.11.042

    CrossRef Google Scholar

    [20] AMMAR M, ABD EL-HALIM S, SHARADA H, et al. Study on the interactions of two models of enzymes as eco-friendly depressants in flotation separation of apatite from hematite[J]. Applied Surface Science, 2022, 601: 154223. doi: 10.1016/j.apsusc.2022.154223

    CrossRef Google Scholar

    [21] GAO Z, WANG Q, WU Y, et al. Quantum chemistry assisted screening of zircon flotation collectors[J]. Minerals Engineering, 2022, 189: 107892. doi: 10.1016/j.mineng.2022.107892

    CrossRef Google Scholar

    [22] FARIS N, RAM R, TARDIO J, et al. Application of ferrous pyrometallurgy to the beneficiation of rare earth bearing iron ores–A review[J]. Minerals Engineering, 2017, 110: 20−30. doi: 10.1016/j.mineng.2017.04.005

    CrossRef Google Scholar

    [23] 李日升, 翟旭东, 冯玉怀, 等. 从某金尾矿中回收金的探讨性试验[J]. 金属矿山, 2017, 493(7): 190−192.

    Google Scholar

    LI R S, ZHAI X D, FEGN Y H, et al. Experiment on recovery gold from a gold tailings resources[J]. Metal Mine, 2017, 493(7): 190−192.

    Google Scholar

    [24] 段明铭, 王苹, 杨鹏, 等. 甘肃某金矿浮选尾矿新型环保浸金剂浸出试验研究[J]. 黄金, 2021, 42(6): 74−77.

    Google Scholar

    DUAN M M, WANG P, YANG P, et al. Experiment study on the leaching of flotation tailings from a gold mine in Gansu with a new type environment-friendly gold leaching reagent[J]. Gold, 2021, 42(6): 74−77.

    Google Scholar

    [25] 杨玮, 叶金秋, 龙涛, 等. 选冶联合回收某高硫黄金尾矿中金的试验研究[J]. 黄金科学技术, 2023, 31(1): 113−122.

    Google Scholar

    YANG W, YE J Q, LONG T, et al. Experimental study on gold recovery from a high-sulfur gold tailings by beneficiation-metallurgy combination[J]. Gold Science and Technology, 2023, 31(1): 113−122.

    Google Scholar

    [26] 常富强, 梁献振, 李杰. 河南某金尾矿回收金试验研究[J]. 现代矿业, 2021, 37(9): 9−11+40.

    Google Scholar

    CHANG F Q, LIANG X Z, LI J. Experimental study on gold recovery from a gold tailings in He’nan[J]. Modern Mining, 2021, 37(9): 9−11+40.

    Google Scholar

    [27] 李骞, 董斯宇, 许瑞, 等. 金矿提金技术及其研究进展[J]. 黄金, 2020, 41(9): 86−101.

    Google Scholar

    LI Q, DONG S Y, XU R, et al. Gold extraction technology for gold ores and its research progress[J]. Gold, 2020, 41(9): 86−101.

    Google Scholar

    [28] 张亮, 杨卉芃, 冯安生, 等. 全球铁矿资源开发利用现状及供需分析[J]. 矿产保护与利用, 2016, 206(6): 57−63.

    Google Scholar

    ZHANG L, YANG H P, FENG A S, et al. Study on utilization and analysis of supply and demand of global iron ore resources[J]. Conservation and Utilization of Mineral Resources, 2016, 206(6): 57−63.

    Google Scholar

    [29] 张胜广, 曹志群, 石云良. 磁化焙烧-磁选-反浮选工艺回收选金尾矿中铁的试验研究[J]. 矿冶工程, 2012, 32(3): 44−47.

    Google Scholar

    ZHANG S G, CAO Z Q, SHI Y L. Experimental study on recycling iron from gold ore tailings by magnetizing roasting-magnetic separation-reverse flotation[J]. Mining and Metallurgy Engineering, 2012, 32(3): 44−47.

    Google Scholar

    [30] 陈延信, 姚艳飞, 酒少武, 等. 分散态磁化焙烧—磁选回收某金尾矿中的铁[J]. 金属矿山, 2012, 428(2): 63−66. doi: 10.3969/j.issn.1001-1250.2012.02.020

    CrossRef Google Scholar

    CHEN Y X, YAO Y F, JIU S W, et al. Recovery of iron from gold mine tailings by decentralized magnetization roasting-magnetic separation[J]. Metal Mine, 2012, 428(2): 63−66. doi: 10.3969/j.issn.1001-1250.2012.02.020

    CrossRef Google Scholar

    [31] 杨振兴, 于鸿宾, 郝福来, 等. 某氰化尾渣综合回收铜铅选矿试验研究[J]. 黄金, 2021, 42(4): 76−79+83.

    Google Scholar

    YANG Z X, YU H B, HAO F L, et al. Experimental study on comprehensive recovery of copper and lead from cyanidation tailings[J]. Gold, 2021, 42(4): 76−79+83.

    Google Scholar

    [32] 周新民, 徐靖, 宋翔宇. 灵宝某金矿白钨尾矿综合回收试验研究[J]. 矿产保护与利用, 2011, 175,176(Z1): 83−87. doi: 10.3969/j.issn.1001-0076.2011.05.021

    CrossRef Google Scholar

    ZHOU X M, XU J, SONG X Y. Comprehensive recovery of scheelite from the gold tailings in Lingbao of He’nan Province[J]. Consorvation and Utilization of Mineral Resources, 2011, 175,176(Z1): 83−87. doi: 10.3969/j.issn.1001-0076.2011.05.021

    CrossRef Google Scholar

    [33] 王英硕, 孙体昌, 郭晓霜, 等. 有色金属尾矿综合利用的方法比较[J]. 现代矿业, 2019, 35(11): 20−24. doi: 10.3969/j.issn.1674-6082.2019.11.006

    CrossRef Google Scholar

    WANG Y S, SUN T C, GUO X S, et al. Comparison of comprehensive utilization methods of nonferrous metal tailings[J]. Modern Mining, 2019, 35(11): 20−24. doi: 10.3969/j.issn.1674-6082.2019.11.006

    CrossRef Google Scholar

    [34] 王江飞. 金浮选尾矿提取石英试验研究[J]. 有色金属(选矿部分), 2015, 34(6): 36−40.

    Google Scholar

    WANG J F. Experimental research on extracting quartz from gold tailings[J]. Nonferrous Metals(Mineral Processing Section), 2015, 34(6): 36−40.

    Google Scholar

    [35] 魏转花, 赖伟强, 黄思捷. 某金尾矿综合回收长石试验研究[J]. 非金属矿, 2014, 37(2): 69−71.

    Google Scholar

    WEI Z H, LAI W Q, HUANG S J. Research on comprehensive recovery of feldspar from gold tailings[J]. Non-metallic Mines, 2014, 37(2): 69−71.

    Google Scholar

    [36] 黄曼, 林海, 刘国富, 等. 从金矿浮选尾矿中回收绢云母的试验研究[J]. 黄金, 2006, 67(3): 38−40.

    Google Scholar

    HAUGN M, LIN H, LIU G F, et al. Study on recovery of sericite from the tailing of gold flotation[J]. Gold, 2006, 67(3): 38−40.

    Google Scholar

    [37] 刘玉. 山东黄金集团生产矿山充填技术现状与展望[J]. 中国金属通报, 2019, 1003(4): 40−41.

    Google Scholar

    LIU Y. Current situations and outlook of filling technology in productive mines of Shandong Gold Corp[J]. China Metal Bulletin, 2019, 1003(4): 40−41.

    Google Scholar

    [38] 谷岩, 南世卿, 李富平. 矿渣胶结材料充填体强度确定及配比优化[J]. 金属矿山, 2014, 453(4): 10−14.

    Google Scholar

    GU Y, NAN S Q, LI F P. Determination of the filling body strength and the ratio optimization made by slag cementitious materials[J]. Metal Mine, 2014, 453(4): 10−14.

    Google Scholar

    [39] 卫亚儒, 王瑞廷, 孙皞, 等. 外加剂在我国尾矿充填中的研究及应用进展[J]. 中国钼业, 2021, 45(5): 1−5. doi: 10.13384/j.cnki.cmi.1006-2602.2021.05.001

    CrossRef Google Scholar

    WEI Y R, WANG R T, SUN G, et al. Research and application progress of admixtures in tailings filling in China[J]. China Molybdenum Industry, 2021, 45(5): 1−5. doi: 10.13384/j.cnki.cmi.1006-2602.2021.05.001

    CrossRef Google Scholar

    [40] 赵英良, 邢军, 刘辉, 等. 蚕庄金矿尾矿碱熔活化制备充填胶凝材料[J]. 有色金属工程, 2017, 7(6): 80−85.

    Google Scholar

    ZHAO Y L, XING J, LIU H, et al. Preparation of binding materials for backfilling using alkali fused gold mine tailings[J]. Nonferrous Metals Engineering, 2017, 7(6): 80−85.

    Google Scholar

    [41] 付万长, 蔡基伟, 史俊礼, 等. 化学与热处理法对金尾矿胶凝活性的激发[J]. 硅酸盐通报, 2020, 39(8): 2542−2548. doi: 10.16552/j.cnki.issn1001-1625.2020.08.024

    CrossRef Google Scholar

    FU W C, CAI J W, SHI J L, et al. Chemical and thermal activation of reactivity of gold tailings as a supplementary cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2542−2548. doi: 10.16552/j.cnki.issn1001-1625.2020.08.024

    CrossRef Google Scholar

    [42] 赵鑫. 黄金尾矿基井下胶结充填材料力学性质研究[D]. 阜新: 辽宁工程技术大学, 2021.

    Google Scholar

    ZHAO X. Study on mechanical property of gold-tailing-based underground cemented filling material[D]. Fuxin: Liaoning Technology University, 2021.

    Google Scholar

    [43] 李礼, 谢超, 冯一鸣. 金尾矿综合利用技术研究与应用进展[J]. 资源开发与市场, 2012, 28(9): 816−818+776. doi: 10.3969/j.issn.1005-8141.2012.09.015

    CrossRef Google Scholar

    LI L, XIE C, FENG Y M. Overview of gold mine tailings comprehensive utilization technology[J]. Resources Development & Market, 2012, 28(9): 816−818+776. doi: 10.3969/j.issn.1005-8141.2012.09.015

    CrossRef Google Scholar

    [44] AHMED T, ELCHALAKANI M, BASARIR H, et al. Development of ECO-UHPC utilizing gold mine tailings as quartz sand alternative[J]. Cleaner Engineering and Technology, 2021(4): 100176. doi: 10.1016/j.clet.2021.100176

    CrossRef Google Scholar

    [45] 刘竞怡, 孙志华, 温久然, 等. 金尾矿砂作为混凝土集料的物化性质及其改性试验[J]. 金属矿山, 2021, 539(5): 211−220. doi: 10.19614/j.cnki.jsks.202105029

    CrossRef Google Scholar

    LIU J Y, SUN Z H, WEN J R, et al. Physical and chemical properties of gold tailing sand as concrete aggregate and its modification test[J]. Metal Mine, 2021, 539(5): 211−220. doi: 10.19614/j.cnki.jsks.202105029

    CrossRef Google Scholar

    [46] 郜志海, 肖国先, 韩静云. 黄金尾矿制高贝利特相掺合料用于C80混凝土的耐久性研究[J]. 混凝土, 2009, 241(11): 51−53+57. doi: 10.3969/j.issn.1002-3550.2009.11.017

    CrossRef Google Scholar

    GAO Z H, XIAO G X, HAN J Y. Research on durability of C80 concrete with belite-rich admixture powder from gold mine tailings[J]. Concrete, 2009, 241(11): 51−53+57. doi: 10.3969/j.issn.1002-3550.2009.11.017

    CrossRef Google Scholar

    [47] 王晓东. 金尾矿在活性粉末混凝土中的应用研究[D]. 石家庄: 石家庄铁道大学, 2017.

    Google Scholar

    WANG X D. Application of gold tailing in the reactive powder concrete[D]. Shijiazhuang: Shijiazhuang Railway University, 2017.

    Google Scholar

    [48] 申艳军, 白志鹏, 郝建帅, 等. 尾矿制备混凝土研究进展与利用现状分析[J]. 硅酸盐通报, 2021, 40(3): 845−857+876. doi: 10.16552/j.cnki.issn1001-1625.20210119.003

    CrossRef Google Scholar

    SHEN Y J, BAI Z P, HAO J S, et al. Research progress and utilization status analysis of concrete prepared by tailings[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 845−857+876. doi: 10.16552/j.cnki.issn1001-1625.20210119.003

    CrossRef Google Scholar

    [49] CHEN B J, PANG L F, ZHAO Y M, et al. Effect of activated gold tailings replacing fly ash on the properties of cement-based grouting material[J]. Journal of Materials in Civil Engineering, 2022, 34(5): 4022066. doi: 10.1061/(ASCE)MT.1943-5533.0004209

    CrossRef Google Scholar

    [50] ALLAHVERDI A, MALEKI A, MAHINROOSTA M. Chemical activation of slag-blended Portland cement[J]. Journal of Building Engineering, 2018, 18: 76−83. doi: 10.1016/j.jobe.2018.03.004

    CrossRef Google Scholar

    [51] 陈烈. 金尾矿胶凝材料的制备及其固氯机理研究[D]. 邯郸: 河北工程大学, 2018.

    Google Scholar

    CHEN L. Study on preparation of cementitious materials with gold tailings and the mechanism of curing chlorine ion[D]. Handan: Hebei University of Engineering, 2018.

    Google Scholar

    [52] 陈炳江. 金尾矿粉活化及其对混凝土性能的影响[D]. 济南: 山东建筑大学, 2022.

    Google Scholar

    CHEN B J. Activation of gold tail powder and its effect on concrete properties [D]. Ji’nan: Shandong Jianzhu University, 2022.

    Google Scholar

    [53] 寇华榕. 综合利用黄金尾矿生产加气混凝土砌块[J]. 建筑技术开发, 2011, 38(2): 7−10. doi: 10.3969/j.issn.1001-523X.2011.02.004

    CrossRef Google Scholar

    KOU H R. Production of aerated concrete block by comprehensive utilization of gold tailings[J]. Building Technology Development, 2011, 38(2): 7−10. doi: 10.3969/j.issn.1001-523X.2011.02.004

    CrossRef Google Scholar

    [54] CAI L X, MA B G, LI X G, et al. Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron tailings: Effect of content and fineness[J]. Construction and Building Materials, 2016, 128(8): 361−372.

    Google Scholar

    [55] 杜辉. 利用沂南金矿尾矿制作加气混凝土的试验研究[D]. 青岛: 青岛理工大学, 2009.

    Google Scholar

    DU H. Experimental study on autoclaved aerated concrete by using Yinan gold mine tailings[D]. Qingdao: Qingdao Technological University, 2009.

    Google Scholar

    [56] 陈鳌聪. 利用金尾矿生产加气混凝土的性能优化试验研究[J]. 建材世界, 2021, 42(6): 24−27. doi: 10.3963/j.issn.1674-6066.2021.06.006

    CrossRef Google Scholar

    CHEN A C. Experimental study on performance optimization of aerated concrete made by gold tailings[J]. The World of Building Materials, 2021, 42(6): 24−27. doi: 10.3963/j.issn.1674-6066.2021.06.006

    CrossRef Google Scholar

    [57] 陈伟, 倪文, 李倩, 等. 石膏掺量和钙硅比对金尾矿加气混凝土性能的影响[J]. 金属矿山, 2013, 443(5): 160−163. doi: 10.3969/j.issn.1001-1250.2013.05.042

    CrossRef Google Scholar

    CHEN W, NI W, LI Q, et al. Effects of gypsum content and calcium-silicon ratio on properties of aerated concrete with gold tailings[J]. Metal Mine, 2013, 443(5): 160−163. doi: 10.3969/j.issn.1001-1250.2013.05.042

    CrossRef Google Scholar

    [58] 许辉. 黄金尾矿在干混砌筑砂浆和泡沫混凝土中的资源化应用[D]. 西安: 西安建筑科技大学, 2017.

    Google Scholar

    XU H. Resource utilization of gold mine tailing on dry-mixed mortar and foamed concrete[D]. Xi’an: Xi’an Architecture and Technology University, 2017.

    Google Scholar

    [59] 祝志雄, 解晓宁, 应晓猛, 等. 砂石矿山固废制备烧结砖试验研究[J]. 新型建筑材料, 2022, 49(9): 123−126. doi: 10.3969/j.issn.1001-702X.2022.09.027

    CrossRef Google Scholar

    ZHU Z X, XIE X N, YING X M, et al. Experimental study on preparation of sintered brick from solid waste of sandstone mine[J]. New building Materials, 2022, 49(9): 123−126. doi: 10.3969/j.issn.1001-702X.2022.09.027

    CrossRef Google Scholar

    [60] 段旭晨. 黄金尾矿制备建筑材料的工艺及性能研究[D]. 淄博: 山东理工大学, 2022.

    Google Scholar

    DUAN X C. Research on preparation technologies and properties of building material from gold tailings[D]. Zibo: Shandong University of Technology, 2022.

    Google Scholar

    [61] 邵力, 何所为, 权胜民, 等. 利用金尾矿生产烧结普通砖的研究[J]. 砖瓦, 1997, 58(1): 34−37. doi: 10.16001/j.cnki.1001-6945.1997.01.012

    CrossRef Google Scholar

    SHAO L, HE S W, QUAN S M, et al. Research on production of sintered ordinary brick from gold tailings[J]. Brick and Tile, 1997, 58(1): 34−37. doi: 10.16001/j.cnki.1001-6945.1997.01.012

    CrossRef Google Scholar

    [62] 晏拥华, 梁嘉琪, 任敏. 利用金尾矿渣生产烧结空心砖的试验[J]. 砖瓦, 2002, 77(5): 18−21. doi: 10.3969/j.issn.1001-6945.2002.05.008

    CrossRef Google Scholar

    YAN Y H, LIANG J Q, REN M. Experiment on production of sintered hollow brick with gold tail slag[J]. Brick and Tile, 2002, 77(5): 18−21. doi: 10.3969/j.issn.1001-6945.2002.05.008

    CrossRef Google Scholar

    [63] 彭建军, 贺深阳, 刘恒波, 等. 白云石质金尾矿制备烧结砖的研究[J]. 新型建筑材料, 2012, 39(10): 21−23. doi: 10.3969/j.issn.1001-702X.2012.10.007

    CrossRef Google Scholar

    PENG J J, HE S Y, LIU H B, et al. Research on preparation of sintered brick by dolomitic gold deposit tailings[J]. New Building Materials, 2012, 39(10): 21−23. doi: 10.3969/j.issn.1001-702X.2012.10.007

    CrossRef Google Scholar

    [64] 贺深阳, 宋美, 彭建军, 等. 高掺量金尾矿烧结砖的烧结机理研究[J]. 砖瓦, 2012, 300(12): 23−26. doi: 10.3969/j.issn.1001-6945.2012.12.004

    CrossRef Google Scholar

    HE S Y, SONG M, PENG J J, et al. Study on firing mechanism of fired brick with high addition of gold deposit tailings[J]. Brick and Tile, 2012, 300(12): 23−26. doi: 10.3969/j.issn.1001-6945.2012.12.004

    CrossRef Google Scholar

    [65] 杨永刚. 利用金尾矿制备烧结普通砖的试验研究[D]. 青岛: 青岛理工大学, 2010.

    Google Scholar

    YANG Y G. Study on making fired common bricks with gold tailings[D]. Qingdao: Qingdao Technological University, 2010.

    Google Scholar

    [66] 庄孙宁. 金矿尾矿制备烧结砖的试验研究[D]. 重庆: 重庆大学, 2019.

    Google Scholar

    ZHUANG S N. Experimental study on preparation of sintered brick using gold tailings[D]. Chongqing: Chongqing University, 2019.

    Google Scholar

    [67] 李晓辉, 陈自东, 陈乐乐, 等. 免烧砖研究进展[J]. 中国资源综合利用, 2023, 41(4): 67−71. doi: 10.3969/j.issn.1008-9500.2023.04.019

    CrossRef Google Scholar

    LI X H, CHEN Z D, CHEN L L, et al. Research progress in unburned bricks[J]. China Resources Comprehensive Utilization, 2023, 41(4): 67−71. doi: 10.3969/j.issn.1008-9500.2023.04.019

    CrossRef Google Scholar

    [68] 袁健博. 赤泥/尾矿/页岩协同制备免烧建材及性能研究[D]. 北京: 中国地质大学, 2020.

    Google Scholar

    YUAN J B. Collaborative preparation of unburned building materials from red mud, gold tailings and shale[D]. Beijing: China University of Geosciences, 2020.

    Google Scholar

    [69] 汪宗文, 刘义波, 赵显辉, 等. 金矿尾矿免烧砖的制备研究[J]. 冶金与材料, 2020, 40(1): 24−25. doi: 10.3969/j.issn.1674-5183.2020.01.016

    CrossRef Google Scholar

    WANG Z W, LIU Y B, ZHAO X H, et al. Study on preparation of sintered brick for gold mine tailings[J]. Metallurgy and Materials, 2020, 40(1): 24−25. doi: 10.3969/j.issn.1674-5183.2020.01.016

    CrossRef Google Scholar

    [70] 谭兴立, 吴林森, 符巩固. 陶粒开发应用现状及在湖南的发展前景[J]. 国土资源导刊, 1997, 93(1): 57−62.

    Google Scholar

    TAN X L, WU L S, FU G G. The present condition of development and application of ceramic grain and its prospect in Hunan[J]. Land & Resources Herald, 1997, 93(1): 57−62.

    Google Scholar

    [71] 杨时元. 陶粒原料性能及其找寻方向的探讨[J]. 建材地质, 1997, 72(4): 14−19.

    Google Scholar

    YANG S Y. Discussion on the properties of ceramic materials and their search direction[J]. Building Materials Geology, 1997, 72(4): 14−19.

    Google Scholar

    [72] 郗斐, 赵大传. 轻质/超轻粉煤灰陶粒的研制及陶粒膨胀机理的探讨和应用[J]. 功能材料, 2010, 41(S3): 518−523.

    Google Scholar

    CHI F, ZHAO D C. Preparation of ultra-lightweight fly ash ceramic (ULFAC), investigation and application of the bloating mechanism[J]. Journal of Functional Materials, 2010, 41(S3): 518−523.

    Google Scholar

    [73] FU Y, QIAO H, FENG Q, et al. Self-stabilisation of high-temperature calcined electrolytic manganese residue in mortar[J]. Construction and Building Materials, 2023, 386: 131460. doi: 10.1016/j.conbuildmat.2023.131460

    CrossRef Google Scholar

    [74] LIU J, LI Z, ZHANG W, et al. The impact of cold-bonded artificial lightweight aggregates produced by municipal solid waste incineration bottom ash (MSWIBA) replace natural aggregates on the mechanical, microscopic and environmental properties, durability of sustainable concrete[J]. Journal of Cleaner Production, 2022, 337: 130479. doi: 10.1016/j.jclepro.2022.130479

    CrossRef Google Scholar

    [75] CHEBOUB T, SENHADJI Y, KHELAFI H, ESCADEILLAS G et al. Investigation of the engineering properties of environmentally-friendly self-compacting lightweight mortar containing olive kernel shells as aggregate[J]. Journal of Cleaner Production, 2020, 249: 119406. doi: 10.1016/j.jclepro.2019.119406

    CrossRef Google Scholar

    [76] 李岩. 彩色陶粒的制备及其性能研究[D]. 济南: 济南大学, 2016

    Google Scholar

    LI Y. The Preparation of colored ceramic and its performance study[D]. Jinan: University of Jinan, 2016.

    Google Scholar

    [77] PARK H, KIM S, SHIN D, et al. Production of lightweight aggregate and ceramic balls using gold tailings, red mud and limestone[C]//Symposium on Towards Materials Resource Sustainability (REWAS) held during the 145th Annual Meeting of the Minerals-Metals-and-Materials-Society (TMS). Nashville, TN, 137-143.

    Google Scholar

    [78] 北京金隅红树林环保技术有限责任公司, 天津城建大学. 一种黄金尾矿免烧轻质陶粒及其制备方法: CN202210512855.7[P]. 2022-07-29.

    Google Scholar

    Beijing Jinyu Mangrove Environmental Protection Technology Co. , LTD. , Tianjin Chengjian University. A kind of non-burning light ceramic particle of gold tailings and its preparation method: CN202210512855.7[P]. 2022-07-29.

    Google Scholar

    [79] 段美学, 闫传霖, 赵蔚琳. 利用金矿尾矿烧制陶粒的正交实验研究[J]. 中国粉体技术, 2014, 20(4): 64−67. doi: 10.13732/j.issn.1008-5548.2014.04.015

    CrossRef Google Scholar

    DUAN M X, YAN C L, ZHAO W L. Orthogonal test of preparing ceramists using gold tailing[J]. China Powder Science and Technology, 2014, 20(4): 64−67. doi: 10.13732/j.issn.1008-5548.2014.04.015

    CrossRef Google Scholar

    [80] 闫传霖. 金尾矿焙烧陶粒的制备与性能研究[D]. 济南: 济南大学, 2014.

    Google Scholar

    YAN C L. The preparation of gold tailings roasting ceramist and its performance study[D]. Ji’nan: University of Ji’nan, 2014.

    Google Scholar

    [81] 孙旭东, 潘德安, 龚裕, 等. 氰化尾渣高温氯化焙烧制备陶粒[J]. 有色金属(冶炼部分), 2020, 23(6): 70−79.

    Google Scholar

    SUN X D, PAN D AN, GONG Y, et al. Preparation of ceramist from cyanide tailings by high-temperature chlorination roasting process[J]. Nonferrous Metals(Extractive Metallurgy), 2020, 23(6): 70−79.

    Google Scholar

    [82] HUO W L, ZHANG X Y, CHEN Y, et al. Novel mullite ceramic foams with high porosity and strength using only fly ash hollow spheres as raw material[J]. Journal of the European Ceramic Society, 2018, 38(4): 2035−2042. doi: 10.1016/j.jeurceramsoc.2017.11.002

    CrossRef Google Scholar

    [83] 张留生, 邱永斌. 高温发泡陶瓷及其应用[J]. 新型建筑材料, 2005, 12(5): 58−59. doi: 10.3969/j.issn.1001-702X.2005.05.022

    CrossRef Google Scholar

    ZHANG L S, QIU Y B. High temperature foamed ceramics and their application[J]. New Building Materials, 2005, 12(5): 58−59. doi: 10.3969/j.issn.1001-702X.2005.05.022

    CrossRef Google Scholar

    [84] 王亚婕. 金尾矿高硫选冶尾渣制备泡沫陶瓷[D]. 武汉: 武汉理工大学, 2016.

    Google Scholar

    WANG Y J. Study of foam ceramic prepared from high-sulfur[D]. Wuhan: Wuhan University of Technology, 2016.

    Google Scholar

    [85] 朱建平, 乐红志, 白荣, 等. 利用黄金尾矿制备发泡陶瓷的研究[J]. 硅酸盐通报, 2021, 40(9): 2989−2997. doi: 10.16552/j.cnki.issn1001-1625.20210630.008

    CrossRef Google Scholar

    ZHU J P, YUE H Z, BAI R, et al. Research on preparation of foamed ceramics from gold tailings[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2989−2997. doi: 10.16552/j.cnki.issn1001-1625.20210630.008

    CrossRef Google Scholar

    [86] 王志明, 渠美云, 姚耿, 等. 利用碱渣和金尾矿协同制备多孔陶瓷中孔结构和晶相的影响因素研究[J]. 山东科技大学学报(自然科学版), 2022, 41(4): 65−74.

    Google Scholar

    WAGN Z M, QU M Y, YAO G, et al. Influence factors of pore structure and crystal phase in preparation of porous ceramics with alkali residue and gold tailings[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2022, 41(4): 65−74.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(3)

Article Metrics

Article views(905) PDF downloads(398) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint