Citation: | CHEN Beibei, TANG Yuan, HE Dongsheng, ZHANG Kecheng, TIAN Chengtao, LI Zhili, QIN Fang. Phosphorus Adsorption Properties in Waste Water of La−modified Synthetic Zeolite from Coal Fly Ash[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 152-159. doi: 10.13779/j.cnki.issn1001-0076.2023.03.018 |
The coal fly ash sample was used to synthesize the zeolite adsorbent, and then the effect of lanthanum modification on phosphorus adsorption of the synthetic zeolite and its mechanism were investigated to help to reduce phosphorus pollution in water. The physicochemical properties of the synthetic zeolite before and after La-modification were systematically characterized by using various analytical techniques. Specifically, the differences of major components, mineral composition and structures before and after modification were explored. Furthermore, the phosphorus removal mechanism was preliminarily discussed from the perspectives of isothermal adsorption experiments, adsorption kinetics experiments and adsorption thermodynamics calculations. The results indicated that the phosphorus removal rate of the La-modified synthetic zeolite reached 94.2% in the simulated wastewater system, which was nearly 65 percentage higher than that without modification. Moreover, the lanthanum ions were physically loaded on the surface of the synthetic zeolite after modification, which enhanced the phosphorus adsorption. The phosphorus adsorption process conforms to the Langmuir adsorption isotherm model and the Elovich equation, and the adsorption happens spontaneously. The study has provided a theoretical and practical basis for promoting the utilization of coal fly ash and eliminating the phosphorus pollutants in water.
[1] | DALU T, WASSERMAN R J, MAGORO M L, et al. River nutrient water and sediment measurements inform on nutrient retention, with implications for eutrophication[J]. Sci. Total Environ., 2019, 684: 296−302. doi: 10.1016/j.scitotenv.2019.05.167 |
[2] | RAMASAHAYAM S K, GUZAM L, GUNAWAN G, et al. A comprehensive review of phosphorus removal technologies and processes[J]. J. Macromol. Sci. (Part A), 2014, 51(6): 538−545. doi: 10.1080/10601325.2014.906271 |
[3] | 李激, 王燕, 罗国兵, 等. 城镇污水处理厂一级A标准运行评估与再提标重难点分析[J]. 环境工程, 2020, 38(7): 1−12. LI J, WANG Y, LU G B, et al. Analysis on the key points and difficulties of operation evaluation and re elevation of grade a standard for urban sewage treatment plants[J]. Environ. Eng., 2020, 38(7): 1−12. |
[4] | 谭心, 邹晓凤, 苏强, 等. 污水处理厂尾水深度除磷技术综述[J]. 山东化工, 2021, 50(16): 277−279. TAN X, ZHOU X F, SU Q, et al. Summary of deep dephosphorization technology in tail water of wastewater treatment plant[J]. Shandong Chem. Ind., 2021, 50(16): 277−279. |
[5] | DOS REIS G S, THUE P S, CAZACLIU B G, et al. Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer[J]. J. Cleaner Prod., 2020, 256: 120416. doi: 10.1016/j.jclepro.2020.120416 |
[6] | HUSSAIN Z, CHANG N, SUN J, et al. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes[J]. J. Hazard. Mater., 2022, 422: 126778. doi: 10.1016/j.jhazmat.2021.126778 |
[7] | 吴迪秀, 罗柳, 贾玉娟, 等. 粉煤灰碱熔融-水热法合成A型沸石及吸附性能研究[J]. 硅酸盐通报, 2019, 38(6): 1873−1877. WU D X, LUO L, JIA Y J, et al. Study on synthesis and adsorption properties of zeolite a from fly ash by alkali melting hydrothermal method[J]. Bull. Chin. Ceram. Soc., 2019, 38(6): 1873−1877. |
[8] | 张力, 李星吾, 张元赏, 等. 粉煤灰综合利用进展及前景展望[J]. 建材发展导向, 2021, 19(24): 1−6. ZHANG L, LI X W, ZHANG Y S, et al. Progress and prospect of comprehensive utilization of fly ash[J]. Dev. Guide. Build. Mater., 2021, 19(24): 1−6. |
[9] | 温丙奎, 吴礼滨, 刘庄, 等. 粉煤灰处理含磷废水工艺特性初探[J]. 山东化工, 2019, 48(5): 229−230+234. WEN B K, WU L B, LIU Z, et al. Preliminary study on the technological characteristics of fly ash treating phosphorus containing wastewater[J]. Shandong Chem. Ind., 2019, 48(5): 229−230+234. |
[10] | HUSSAIN Z, LIZHEN G, MOEEN M. Treatment of coal fly ash and environmentally friendly use with rubber in cable wires as insulation material[J]. Sustainability, 2020, 12(12): 5218. doi: 10.3390/su12125218 |
[11] | 李博琦, 谢贤, 吕晋芳, 等. 粉煤灰资源化综合利用研究进展及展望[J]. 矿产保护与利用, 2020, 40(5): 153−160. LI B Q, XIE X, LV J F, et al. Progress and prospect of research on comprehensive utilization of fly ash[J]. Conserv. Util. Min. Resour., 2020, 40(5): 153−160. |
[12] | LUO Y, WU Y, MA S, et al. Utilization of coal fly ash in China: a mini-review on challenges and future directions[J]. Environ. Sci. Pollut. Res., 2021, 28: 18727−18740. doi: 10.1007/s11356-020-08864-4 |
[13] | MUSHTAQ F, ZAHID M, BHATTI I A, et al. Possible applications of coal fly ash in wastewater treatment[J]. J. Environ. Manage., 2019, 240: 27−46. doi: 10.1016/j.jenvman.2019.03.054 |
[14] | 徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104−111. XU S, YANG J L, MA S J. Research progress in the comprehensive utilization of fly ash[J]. Conserv. Util. Min. Resour., 2021, 41(3): 104−111. |
[15] | GOLLAKOTA A R K, VOLLI V, SHU C M. Progressive utilisation prospects of coal fly ash: A review[J]. Sci. Total Environ., 2019, 672: 951−989. doi: 10.1016/j.scitotenv.2019.03.337 |
[16] | XING Y, GUO F, XU M, et al. Separation of unburned carbon from coal fly ash: A review[J]. Powder Technol., 2019, 353: 372−384. doi: 10.1016/j.powtec.2019.05.037 |
[17] | WANG N, ZHAO Q, LI Q, et al. Degradation of polyacrylamide in an ultrasonic-Fenton-like process using an acid−modified coal fly ash catalyst[J]. Powder Technol., 2020, 369: 270−278. doi: 10.1016/j.powtec.2020.05.052 |
[18] | 李喜林, 张颖, 孙彤彤, 等. CaSx-合成沸石联用处理高浓度含铬废水试验研究[J]. 硅酸盐通报, 2019, 38(5): 1538−1544. LI X L, ZHANG Y, SUN T T, et al. Experimental study on treating wastewater containing high concentration of chromium by CaSx−synthetic zeolite[J]. Bull. Chin. Ceram. Soc., 2019, 38(5): 1538−1544. |
[19] | 赵统刚, 吴德意, 孔海南, 等. 粉煤灰合成沸石除磷机理研究[J]. 水处理技术, 2006(7): 23−26. doi: 10.3969/j.issn.1000-3770.2006.07.006 ZHAO T G, WU D Y, KONG H N, et al. Study on phosphorus removal mechanism of zeolite synthesized from fly ash[J]. Technol. Water Treat., 2006(7): 23−26. doi: 10.3969/j.issn.1000-3770.2006.07.006 |
[20] | ESTEVAM S T, DE AQUINO T F, DA SILVA T D, et al. Synthesis of K−merlinoite zeolite from coal fly ash for fertilizer application[J]. Braz. J. Chem. Eng., 2022: 1-13. |
[21] | 崔家新, 王连勇, 李尧, 等. 水淬渣−粉煤灰基4A沸石的制备及性能表征[J]. 无机盐工业, 2022, 54(4): 135−140. doi: 10.19964/j.issn.1006-4990.2021-0399 CUI J X, WANG L Y, LU S M, et al. Preparation and characterization of 4A zeolite based on water quenched slag and fly ash[J]. Inorg. Chem. Ind., 2022, 54(4): 135−140. doi: 10.19964/j.issn.1006-4990.2021-0399 |
[22] | 褚琳琳, 宋媛媛, 吕晓昊. 粉煤灰制备沸石的合成方法研究及环保应用[J]. 河北环境工程学院学报, 2021, 31(5): 62−66+81. CHU L L, SONG Y Y, LU X H. Study on synthesis method of zeolite prepared from fly ash and its environmental protection application[J]. J. Hebei Univ. Environ. Eng., 2021, 31(5): 62−66+81. |
[23] | 白芸, 张发旺, 宋佩佩, 等. 基于水热法利用粉煤灰制备沸石的研究进展[J]. 云南化工, 2021, 48(8): 33−37. BAI Y, ZHANG F W, SONG P P, et al. Research progress of preparing zeolite from fly ash based on hydrothermal method[J]. Yunnan Chem. Technol., 2021, 48(8): 33−37. |
[24] | 杨云汉, 杨俊丽, 鲁佳佳, 等. 阳离子化柱[5]芳烃改性沸石对溴甲酚紫的吸附研究[J]. 分析化学, 2019, 47(12): 1922−1930. YANG Y H, YANG J L, LU J J, et al. Adsorption of bromocresol violet on cationic column aromatic modified zeolite[J]. Chin. J. Anal. Chem., 2019, 47(12): 1922−1930. |
[25] | SHUKLA E A, JOHAN E, HENMI T, et al. Arsenate adsorption on iron modified artificial zeolite made from coal fly ash[J]. Procedia Environ. Sci., 2013, 17: 279−284. doi: 10.1016/j.proenv.2013.02.039 |
[26] | NASCIMENTO M, SOARES P S M, DE SOUZA V P. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method[J]. Fuel, 2009, 88(9): 1714−1719. doi: 10.1016/j.fuel.2009.01.007 |
[27] | QIU Q, JIANG X, LV G, et al. Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave−assisted hydrothermal treatment[J]. Powder Technol., 2018, 335: 156−163. doi: 10.1016/j.powtec.2018.05.003 |
[28] | ASAOKA S, KAWAKAMI K, SAITO H, et al. Adsorption of phosphate onto lanthanum−doped coal fly ash−blast furnace cement composite[J]. J. Hazard. Mater., 2021, 406: 124780. doi: 10.1016/j.jhazmat.2020.124780 |
[29] | XU R, LYU T, WANG L, et al. Utilization of coal fly ash waste for effective recapture of phosphorus from waters[J]. Chemosphere, 2022, 287: 132431. doi: 10.1016/j.chemosphere.2021.132431 |
[30] | 王小高, 冯有利, 何德海. 改性粉煤灰在废水处理中的应用[J]. 桂林工学院学报, 2007, 27(2): 245−248. WANG X G, FEN Y L, HE D H. Application of modified fly ash in wastewater treatment[J]. Guilin Univ. Tech., 2007, 27(2): 245−248. |
[31] | 田苗苗, 苏日艳, 贾琼, 等. 镧掺杂二氧化钛/沸石微柱在线预富集-分光光度法测定溶菌酶含量[J]. 分析化学, 2011, 39(1): 103−106. doi: 10.1016/S1872-2040(10)60411-2 TIAN M M, SU R Y, JIA Q, et al. Online preconcentration of lanthanum doped titanium dioxide/zeolite microcolumn and spectrophotometric determination of lysozyme content[J]. Chin. J. Anal. Chem., 2011, 39(1): 103−106. doi: 10.1016/S1872-2040(10)60411-2 |
[32] | GOSCIANSKA J, PTASZKOWSKA−KONIARZ M, FRANKOWSKI M, et al. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash[J]. J. Colloid Interface Sci., 2018, 513: 72−81. doi: 10.1016/j.jcis.2017.11.003 |
[33] | WANG C, XU G, GU X, et al. High value−added applications of coal fly ash in the form of porous materials: A review[J]. Ceram. Int., 2021, 47(16): 22302−22315. doi: 10.1016/j.ceramint.2021.05.070 |
[34] | 孙延文, 王连勇, 杨湘澜, 等. 粉煤灰基沸石的制备及应用研究进展[J]. 硅酸盐通报, 2021, 40(1): 123−132. doi: 10.16552/j.cnki.issn1001-1625.2021.01.012 SUN Y W, WANG L Y, YANG X L, et al. Research progress on synthesis and application of zeolite based on coal fly ash[J]. Bull. Chin. Ceram. Soc., 2021, 40(1): 123−132. doi: 10.16552/j.cnki.issn1001-1625.2021.01.012 |
[35] | 刘志超, 史晓燕, 李艳根, 等. 镧改性粉煤灰及其脱氮除磷效果研究[J]. 化工新型材料, 2018, 46(2): 205−208. LIU Z C, SHI X Y, LI Y G, et al. Lanthanum modified fly-ash for the removal of phosphorus and nitrogen[J]. New Chem. Mater., 2018, 46(2): 205−208. |
[36] | YANG C, SUN X, LIU B, et al. Determination of total phosphorus in water sample by digital imaging colorimetry[J]. Chin. J. Anal. Chem., 2007, 35(6): 850−853. doi: 10.1016/S1872-2040(07)60059-0 |
[37] | HAN R, ZHANG J, HAN P, et al. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite[J]. Chem. Eng. J., 2009, 145(3): 496−504. doi: 10.1016/j.cej.2008.05.003 |
[38] | HOLLMAN G G, STEENBRUGGEN G, JANSSEN-JURKOVICOVA M. A two−step process for the synthesis of zeolites from coal fly ash[J]. Fuel, 1999, 78: 1225−1230. doi: 10.1016/S0016-2361(99)00030-7 |
[39] | GARCIA LODEIRO I, FERNANDEZ JIMENEZ A, BLANCO M T, et al. Ftir study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H[J]. J. Sol-Gel Sci. Technol., 2008, 45: 63−72. doi: 10.1007/s10971-007-1643-6 |
[40] | KARAPINAR N. Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions[J]. J. Hazard. Mater., 2009, 170(2/3): 1186−1191. |
[41] | KONG X, HAN Z, ZHANG W, et al. Synthesis of zeolite-supported microscale zero−valent iron for the removal of Cr6+ and Cd2+ from aqueous solution[J]. J. Environ. Manage., 2016, 169: 84−90. doi: 10.1016/j.jenvman.2015.12.022 |
[42] | HUANG X, ZHAO H, HU X, et al. Optimization of preparation technology for modified coal fly ash and its adsorption properties for Cd2+[J]. J. Hazard. Mater., 2020, 392: 122461. doi: 10.1016/j.jhazmat.2020.122461 |
Diffraction patterns of synthetic zeolite before and after modification
EDAX analysis of synthetic zeolite before (a, c) and after modification (b, d)
FTIR spectra of synthetic zeolite before and after modification
Effect of different adsorbents on phosphorus removal
Adsorption isotherm of phosphorus in wastewater by the modified zeolites
(a) Linear fitting of Langmuir isotherm adsorption model; (b) Linear fitting of Freundlich adsorption isotherm model
Fitting diagram of modified zeolite adsorption kinetics
Stage fitting curve of modified zeolite intraparticle diffusion model
Relationship between lnKe and 1/T of phosphorus removal by modified zeolite