Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

CHEN Beibei, TANG Yuan, HE Dongsheng, ZHANG Kecheng, TIAN Chengtao, LI Zhili, QIN Fang. Phosphorus Adsorption Properties in Waste Water of La−modified Synthetic Zeolite from Coal Fly Ash[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 152-159. doi: 10.13779/j.cnki.issn1001-0076.2023.03.018
Citation: CHEN Beibei, TANG Yuan, HE Dongsheng, ZHANG Kecheng, TIAN Chengtao, LI Zhili, QIN Fang. Phosphorus Adsorption Properties in Waste Water of La−modified Synthetic Zeolite from Coal Fly Ash[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 152-159. doi: 10.13779/j.cnki.issn1001-0076.2023.03.018

Phosphorus Adsorption Properties in Waste Water of La−modified Synthetic Zeolite from Coal Fly Ash

More Information
  • The coal fly ash sample was used to synthesize the zeolite adsorbent, and then the effect of lanthanum modification on phosphorus adsorption of the synthetic zeolite and its mechanism were investigated to help to reduce phosphorus pollution in water. The physicochemical properties of the synthetic zeolite before and after La-modification were systematically characterized by using various analytical techniques. Specifically, the differences of major components, mineral composition and structures before and after modification were explored. Furthermore, the phosphorus removal mechanism was preliminarily discussed from the perspectives of isothermal adsorption experiments, adsorption kinetics experiments and adsorption thermodynamics calculations. The results indicated that the phosphorus removal rate of the La-modified synthetic zeolite reached 94.2% in the simulated wastewater system, which was nearly 65 percentage higher than that without modification. Moreover, the lanthanum ions were physically loaded on the surface of the synthetic zeolite after modification, which enhanced the phosphorus adsorption. The phosphorus adsorption process conforms to the Langmuir adsorption isotherm model and the Elovich equation, and the adsorption happens spontaneously. The study has provided a theoretical and practical basis for promoting the utilization of coal fly ash and eliminating the phosphorus pollutants in water.

  • 加载中
  • [1] DALU T, WASSERMAN R J, MAGORO M L, et al. River nutrient water and sediment measurements inform on nutrient retention, with implications for eutrophication[J]. Sci. Total Environ., 2019, 684: 296−302. doi: 10.1016/j.scitotenv.2019.05.167

    CrossRef Google Scholar

    [2] RAMASAHAYAM S K, GUZAM L, GUNAWAN G, et al. A comprehensive review of phosphorus removal technologies and processes[J]. J. Macromol. Sci. (Part A), 2014, 51(6): 538−545. doi: 10.1080/10601325.2014.906271

    CrossRef Google Scholar

    [3] 李激, 王燕, 罗国兵, 等. 城镇污水处理厂一级A标准运行评估与再提标重难点分析[J]. 环境工程, 2020, 38(7): 1−12.

    Google Scholar

    LI J, WANG Y, LU G B, et al. Analysis on the key points and difficulties of operation evaluation and re elevation of grade a standard for urban sewage treatment plants[J]. Environ. Eng., 2020, 38(7): 1−12.

    Google Scholar

    [4] 谭心, 邹晓凤, 苏强, 等. 污水处理厂尾水深度除磷技术综述[J]. 山东化工, 2021, 50(16): 277−279.

    Google Scholar

    TAN X, ZHOU X F, SU Q, et al. Summary of deep dephosphorization technology in tail water of wastewater treatment plant[J]. Shandong Chem. Ind., 2021, 50(16): 277−279.

    Google Scholar

    [5] DOS REIS G S, THUE P S, CAZACLIU B G, et al. Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer[J]. J. Cleaner Prod., 2020, 256: 120416. doi: 10.1016/j.jclepro.2020.120416

    CrossRef Google Scholar

    [6] HUSSAIN Z, CHANG N, SUN J, et al. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes[J]. J. Hazard. Mater., 2022, 422: 126778. doi: 10.1016/j.jhazmat.2021.126778

    CrossRef Google Scholar

    [7] 吴迪秀, 罗柳, 贾玉娟, 等. 粉煤灰碱熔融-水热法合成A型沸石及吸附性能研究[J]. 硅酸盐通报, 2019, 38(6): 1873−1877.

    Google Scholar

    WU D X, LUO L, JIA Y J, et al. Study on synthesis and adsorption properties of zeolite a from fly ash by alkali melting hydrothermal method[J]. Bull. Chin. Ceram. Soc., 2019, 38(6): 1873−1877.

    Google Scholar

    [8] 张力, 李星吾, 张元赏, 等. 粉煤灰综合利用进展及前景展望[J]. 建材发展导向, 2021, 19(24): 1−6.

    Google Scholar

    ZHANG L, LI X W, ZHANG Y S, et al. Progress and prospect of comprehensive utilization of fly ash[J]. Dev. Guide. Build. Mater., 2021, 19(24): 1−6.

    Google Scholar

    [9] 温丙奎, 吴礼滨, 刘庄, 等. 粉煤灰处理含磷废水工艺特性初探[J]. 山东化工, 2019, 48(5): 229−230+234.

    Google Scholar

    WEN B K, WU L B, LIU Z, et al. Preliminary study on the technological characteristics of fly ash treating phosphorus containing wastewater[J]. Shandong Chem. Ind., 2019, 48(5): 229−230+234.

    Google Scholar

    [10] HUSSAIN Z, LIZHEN G, MOEEN M. Treatment of coal fly ash and environmentally friendly use with rubber in cable wires as insulation material[J]. Sustainability, 2020, 12(12): 5218. doi: 10.3390/su12125218

    CrossRef Google Scholar

    [11] 李博琦, 谢贤, 吕晋芳, 等. 粉煤灰资源化综合利用研究进展及展望[J]. 矿产保护与利用, 2020, 40(5): 153−160.

    Google Scholar

    LI B Q, XIE X, LV J F, et al. Progress and prospect of research on comprehensive utilization of fly ash[J]. Conserv. Util. Min. Resour., 2020, 40(5): 153−160.

    Google Scholar

    [12] LUO Y, WU Y, MA S, et al. Utilization of coal fly ash in China: a mini-review on challenges and future directions[J]. Environ. Sci. Pollut. Res., 2021, 28: 18727−18740. doi: 10.1007/s11356-020-08864-4

    CrossRef Google Scholar

    [13] MUSHTAQ F, ZAHID M, BHATTI I A, et al. Possible applications of coal fly ash in wastewater treatment[J]. J. Environ. Manage., 2019, 240: 27−46. doi: 10.1016/j.jenvman.2019.03.054

    CrossRef Google Scholar

    [14] 徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104−111.

    Google Scholar

    XU S, YANG J L, MA S J. Research progress in the comprehensive utilization of fly ash[J]. Conserv. Util. Min. Resour., 2021, 41(3): 104−111.

    Google Scholar

    [15] GOLLAKOTA A R K, VOLLI V, SHU C M. Progressive utilisation prospects of coal fly ash: A review[J]. Sci. Total Environ., 2019, 672: 951−989. doi: 10.1016/j.scitotenv.2019.03.337

    CrossRef Google Scholar

    [16] XING Y, GUO F, XU M, et al. Separation of unburned carbon from coal fly ash: A review[J]. Powder Technol., 2019, 353: 372−384. doi: 10.1016/j.powtec.2019.05.037

    CrossRef Google Scholar

    [17] WANG N, ZHAO Q, LI Q, et al. Degradation of polyacrylamide in an ultrasonic-Fenton-like process using an acid−modified coal fly ash catalyst[J]. Powder Technol., 2020, 369: 270−278. doi: 10.1016/j.powtec.2020.05.052

    CrossRef Google Scholar

    [18] 李喜林, 张颖, 孙彤彤, 等. CaSx-合成沸石联用处理高浓度含铬废水试验研究[J]. 硅酸盐通报, 2019, 38(5): 1538−1544.

    Google Scholar

    LI X L, ZHANG Y, SUN T T, et al. Experimental study on treating wastewater containing high concentration of chromium by CaSx−synthetic zeolite[J]. Bull. Chin. Ceram. Soc., 2019, 38(5): 1538−1544.

    Google Scholar

    [19] 赵统刚, 吴德意, 孔海南, 等. 粉煤灰合成沸石除磷机理研究[J]. 水处理技术, 2006(7): 23−26. doi: 10.3969/j.issn.1000-3770.2006.07.006

    CrossRef Google Scholar

    ZHAO T G, WU D Y, KONG H N, et al. Study on phosphorus removal mechanism of zeolite synthesized from fly ash[J]. Technol. Water Treat., 2006(7): 23−26. doi: 10.3969/j.issn.1000-3770.2006.07.006

    CrossRef Google Scholar

    [20] ESTEVAM S T, DE AQUINO T F, DA SILVA T D, et al. Synthesis of K−merlinoite zeolite from coal fly ash for fertilizer application[J]. Braz. J. Chem. Eng., 2022: 1-13.

    Google Scholar

    [21] 崔家新, 王连勇, 李尧, 等. 水淬渣−粉煤灰基4A沸石的制备及性能表征[J]. 无机盐工业, 2022, 54(4): 135−140. doi: 10.19964/j.issn.1006-4990.2021-0399

    CrossRef Google Scholar

    CUI J X, WANG L Y, LU S M, et al. Preparation and characterization of 4A zeolite based on water quenched slag and fly ash[J]. Inorg. Chem. Ind., 2022, 54(4): 135−140. doi: 10.19964/j.issn.1006-4990.2021-0399

    CrossRef Google Scholar

    [22] 褚琳琳, 宋媛媛, 吕晓昊. 粉煤灰制备沸石的合成方法研究及环保应用[J]. 河北环境工程学院学报, 2021, 31(5): 62−66+81.

    Google Scholar

    CHU L L, SONG Y Y, LU X H. Study on synthesis method of zeolite prepared from fly ash and its environmental protection application[J]. J. Hebei Univ. Environ. Eng., 2021, 31(5): 62−66+81.

    Google Scholar

    [23] 白芸, 张发旺, 宋佩佩, 等. 基于水热法利用粉煤灰制备沸石的研究进展[J]. 云南化工, 2021, 48(8): 33−37.

    Google Scholar

    BAI Y, ZHANG F W, SONG P P, et al. Research progress of preparing zeolite from fly ash based on hydrothermal method[J]. Yunnan Chem. Technol., 2021, 48(8): 33−37.

    Google Scholar

    [24] 杨云汉, 杨俊丽, 鲁佳佳, 等. 阳离子化柱[5]芳烃改性沸石对溴甲酚紫的吸附研究[J]. 分析化学, 2019, 47(12): 1922−1930.

    Google Scholar

    YANG Y H, YANG J L, LU J J, et al. Adsorption of bromocresol violet on cationic column aromatic modified zeolite[J]. Chin. J. Anal. Chem., 2019, 47(12): 1922−1930.

    Google Scholar

    [25] SHUKLA E A, JOHAN E, HENMI T, et al. Arsenate adsorption on iron modified artificial zeolite made from coal fly ash[J]. Procedia Environ. Sci., 2013, 17: 279−284. doi: 10.1016/j.proenv.2013.02.039

    CrossRef Google Scholar

    [26] NASCIMENTO M, SOARES P S M, DE SOUZA V P. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method[J]. Fuel, 2009, 88(9): 1714−1719. doi: 10.1016/j.fuel.2009.01.007

    CrossRef Google Scholar

    [27] QIU Q, JIANG X, LV G, et al. Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave−assisted hydrothermal treatment[J]. Powder Technol., 2018, 335: 156−163. doi: 10.1016/j.powtec.2018.05.003

    CrossRef Google Scholar

    [28] ASAOKA S, KAWAKAMI K, SAITO H, et al. Adsorption of phosphate onto lanthanum−doped coal fly ash−blast furnace cement composite[J]. J. Hazard. Mater., 2021, 406: 124780. doi: 10.1016/j.jhazmat.2020.124780

    CrossRef Google Scholar

    [29] XU R, LYU T, WANG L, et al. Utilization of coal fly ash waste for effective recapture of phosphorus from waters[J]. Chemosphere, 2022, 287: 132431. doi: 10.1016/j.chemosphere.2021.132431

    CrossRef Google Scholar

    [30] 王小高, 冯有利, 何德海. 改性粉煤灰在废水处理中的应用[J]. 桂林工学院学报, 2007, 27(2): 245−248.

    Google Scholar

    WANG X G, FEN Y L, HE D H. Application of modified fly ash in wastewater treatment[J]. Guilin Univ. Tech., 2007, 27(2): 245−248.

    Google Scholar

    [31] 田苗苗, 苏日艳, 贾琼, 等. 镧掺杂二氧化钛/沸石微柱在线预富集-分光光度法测定溶菌酶含量[J]. 分析化学, 2011, 39(1): 103−106. doi: 10.1016/S1872-2040(10)60411-2

    CrossRef Google Scholar

    TIAN M M, SU R Y, JIA Q, et al. Online preconcentration of lanthanum doped titanium dioxide/zeolite microcolumn and spectrophotometric determination of lysozyme content[J]. Chin. J. Anal. Chem., 2011, 39(1): 103−106. doi: 10.1016/S1872-2040(10)60411-2

    CrossRef Google Scholar

    [32] GOSCIANSKA J, PTASZKOWSKA−KONIARZ M, FRANKOWSKI M, et al. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash[J]. J. Colloid Interface Sci., 2018, 513: 72−81. doi: 10.1016/j.jcis.2017.11.003

    CrossRef Google Scholar

    [33] WANG C, XU G, GU X, et al. High value−added applications of coal fly ash in the form of porous materials: A review[J]. Ceram. Int., 2021, 47(16): 22302−22315. doi: 10.1016/j.ceramint.2021.05.070

    CrossRef Google Scholar

    [34] 孙延文, 王连勇, 杨湘澜, 等. 粉煤灰基沸石的制备及应用研究进展[J]. 硅酸盐通报, 2021, 40(1): 123−132. doi: 10.16552/j.cnki.issn1001-1625.2021.01.012

    CrossRef Google Scholar

    SUN Y W, WANG L Y, YANG X L, et al. Research progress on synthesis and application of zeolite based on coal fly ash[J]. Bull. Chin. Ceram. Soc., 2021, 40(1): 123−132. doi: 10.16552/j.cnki.issn1001-1625.2021.01.012

    CrossRef Google Scholar

    [35] 刘志超, 史晓燕, 李艳根, 等. 镧改性粉煤灰及其脱氮除磷效果研究[J]. 化工新型材料, 2018, 46(2): 205−208.

    Google Scholar

    LIU Z C, SHI X Y, LI Y G, et al. Lanthanum modified fly-ash for the removal of phosphorus and nitrogen[J]. New Chem. Mater., 2018, 46(2): 205−208.

    Google Scholar

    [36] YANG C, SUN X, LIU B, et al. Determination of total phosphorus in water sample by digital imaging colorimetry[J]. Chin. J. Anal. Chem., 2007, 35(6): 850−853. doi: 10.1016/S1872-2040(07)60059-0

    CrossRef Google Scholar

    [37] HAN R, ZHANG J, HAN P, et al. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite[J]. Chem. Eng. J., 2009, 145(3): 496−504. doi: 10.1016/j.cej.2008.05.003

    CrossRef Google Scholar

    [38] HOLLMAN G G, STEENBRUGGEN G, JANSSEN-JURKOVICOVA M. A two−step process for the synthesis of zeolites from coal fly ash[J]. Fuel, 1999, 78: 1225−1230. doi: 10.1016/S0016-2361(99)00030-7

    CrossRef Google Scholar

    [39] GARCIA LODEIRO I, FERNANDEZ JIMENEZ A, BLANCO M T, et al. Ftir study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H[J]. J. Sol-Gel Sci. Technol., 2008, 45: 63−72. doi: 10.1007/s10971-007-1643-6

    CrossRef Google Scholar

    [40] KARAPINAR N. Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions[J]. J. Hazard. Mater., 2009, 170(2/3): 1186−1191.

    Google Scholar

    [41] KONG X, HAN Z, ZHANG W, et al. Synthesis of zeolite-supported microscale zero−valent iron for the removal of Cr6+ and Cd2+ from aqueous solution[J]. J. Environ. Manage., 2016, 169: 84−90. doi: 10.1016/j.jenvman.2015.12.022

    CrossRef Google Scholar

    [42] HUANG X, ZHAO H, HU X, et al. Optimization of preparation technology for modified coal fly ash and its adsorption properties for Cd2+[J]. J. Hazard. Mater., 2020, 392: 122461. doi: 10.1016/j.jhazmat.2020.122461

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(5)

Article Metrics

Article views(555) PDF downloads(31) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint