Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

GUAN Rui, WANG Yulian, WAN Tiancheng, ZHANG Yifan, LI Jixun, DENG Feng, YU Yu, LI Keqing, SU Junzhang, SUN Haoran, HAN Huili, YUAN Zhigang, SU Desheng, ZHAO Lianxiang. Preparation of Nanoporous Hollow Rod—shaped Magnesium Oxide by Magnesium Carbonate Trihydrate Roasting Method[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 145-151. doi: 10.13779/j.cnki.issn1001-0076.2023.03.017
Citation: GUAN Rui, WANG Yulian, WAN Tiancheng, ZHANG Yifan, LI Jixun, DENG Feng, YU Yu, LI Keqing, SU Junzhang, SUN Haoran, HAN Huili, YUAN Zhigang, SU Desheng, ZHAO Lianxiang. Preparation of Nanoporous Hollow Rod—shaped Magnesium Oxide by Magnesium Carbonate Trihydrate Roasting Method[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 145-151. doi: 10.13779/j.cnki.issn1001-0076.2023.03.017

Preparation of Nanoporous Hollow Rod—shaped Magnesium Oxide by Magnesium Carbonate Trihydrate Roasting Method

More Information
  • The precursor MgCO3·3H2O was prepared by liquid phase precipitation using MgCl2·6H2O as raw material and (NH4)2CO3 as precipitant,, and magnesium oxide with fiber structure was prepared by roasting the precursor. The effects of precipitant concentration, reaction temperature, roasting temperature and roasting time on the average particle size and phase composition of the product were mainly discussed, and the formation mechanism was explored. The results showed that when the concentration of precipitant was 1.5 mol/L, the reaction temperature was 40 ℃, the roasting temperature was 600 ℃, and the roasting time was 120 min, the nano−hollow rod−like magnesium oxide could be obtained, and the surface of which was connected by flakes to form a porous structure, and the precursor magnesium carbonate trihydrate played a template role in the high-temperature roasting process.

  • 加载中
  • [1] JUN L, ZHU Q S, PENG W C, et al. Novel hierarchical Ni/MgO catalyst for highly efficient CO methanation in a fluidized bed reactor[J]. AICHE Journal, 2017, 63(6): 2141−2152. doi: 10.1002/aic.15597

    CrossRef Google Scholar

    [2] LI J W, LI J, ZHU Q S. Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/MgO catalyst[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2344−2350. doi: 10.1016/j.cjche.2018.05.025

    CrossRef Google Scholar

    [3] R HALDER, S BANDY. Synthesis and optical properties of anion deficient nano MgO[J]. Journal of Alloys and Compounds, 2017, 693: 534−542. doi: 10.1016/j.jallcom.2016.09.164

    CrossRef Google Scholar

    [4] 刘珈伊, 王余莲, 时天骄, 等. 无水乙醇辅助低温直接法制备碱式碳酸镁晶体[J]. 中国粉体技术, 2021, 27(1): 41−49.

    Google Scholar

    LIU J Y, WANG Y L, SHI T J, et al. Absolute ethanol assisted low-temperature direct method to prepare basic magnesium carbonate crystals[J]. Chinese powder technology, 2021, 27(1): 41−49.

    Google Scholar

    [5] NUNRUNG W, et al. The adsorption study of methylene blue onto MgO from various preparation methods[J]. Environment Science Technology, 2011, 4: 534−542. doi: 10.3923/jest.2011.534.542

    CrossRef Google Scholar

    [6] JIN Z, JIA Y, ZHANG K S, et al. Effective removal of fluoride by porous MgO nanoplates and its adsorption mechanism[J]. Journal of Alloys and Compounds, 2016, 675: 292−300. doi: 10.1016/j.jallcom.2016.03.118

    CrossRef Google Scholar

    [7] BREWER R T, ATWATER H A. Rapid biaxial texture development during nucleation of MgO thin films during ion beam-assisted deposition[J]. Applied Physics Letters, 2002, 80(18): 3388−3390. doi: 10.1063/1.1476385

    CrossRef Google Scholar

    [8] MA L A, LIN Z X, LIN J Y. Large-scale growth of ultrathin MgO nanowires and evaluate their field emission properties[J]. Physical E, 2009, 41: 1500−1503. doi: 10.1016/j.physe.2009.04.028

    CrossRef Google Scholar

    [9] AHMED S. CTAB-assisted fabrication of hierarchical flower-like magnesium oxide adsorbent for enhanced removal performance towards phosphate[J]. Journal of Magnesium and Alloys, 2022.

    Google Scholar

    [10] AHMED S, PAN J S, ASHIQ M N, et al. Ethylene glycol-assisted fabrication and superb adsorption capacity of hierarchical porous flower−like magnesium oxide microspheres for phosphate[J]. Inorganic Chemistry Frontiers, 2019, 6.

    Google Scholar

    [11] RANDILIGAMA H, MANTILAKA M, PALIHAWADANA T C. Urea−assisted synthesis of nanospherical and plate-like magnesium oxides for efficient removal of reactive dye wastes[J]. Journal of Nanomaterials, 2020: 1−10.

    Google Scholar

    [12] 王宝和, 张伟, 张文博. 共沸蒸馏置换干燥法制备纳米氧化镁粉体的研究[J]. 盐湖研究, 2006, 14(3): 34−38. doi: 10.3969/j.issn.1008-858X.2006.03.006

    CrossRef Google Scholar

    WANG B H, ZHANG W, ZHANG W B. Study on the preparation of nano−magnesium oxide powder by azeotropic distillation displacement drying method[J]. Salt Lake Research, 2006, 14(3): 34−38. doi: 10.3969/j.issn.1008-858X.2006.03.006

    CrossRef Google Scholar

    [13] 高绪亮, 朱伟长. 氧化镁纳米粉体的制备[J]. 安徽工业大学学报, 2014, 31(2): 140−142.

    Google Scholar

    GAO X G, ZHU W C. Preparation of magnesium oxide nanopowders[J]. Journal of Anhui University of Technology, 2014, 31(2): 140−142.

    Google Scholar

    [14] 管洪波, 王培, 赵壁英, 等. 低温固相法制备高比表面积的纳米MgO[J]. 催化学报, 2006, 27(9): 793−798. doi: 10.3321/j.issn:0253-9837.2006.09.010

    CrossRef Google Scholar

    GUAN H B, WANG P, ZHAO B Y, et al. Preparation of nano−MgO with high specific surface area by low−temperature solid-phase method[J]. Chinese Journal of Catalysis, 2006, 27(9): 793−798. doi: 10.3321/j.issn:0253-9837.2006.09.010

    CrossRef Google Scholar

    [15] 伊赞荃, 赵爱东, 翟学良. 碱式硫酸镁烧结法制备氧化镁晶须[J]. 无机盐工业, 2007, 39(1): 28−30. doi: 10.3969/j.issn.1006-4990.2007.01.010

    CrossRef Google Scholar

    YI Z Q, ZHAO A D, QU X L. Magnesium oxide whiskers were prepared by basic magnesium sulfate sintering method[J]. Inorganic salt industry, 2007, 39(1): 28−30. doi: 10.3969/j.issn.1006-4990.2007.01.010

    CrossRef Google Scholar

    [16] 薛冬峰, 邹龙江, 闫小星. 氧化镁晶须制备及影响因素考查[J]. 大连理工大学学报, 2007, 47(4): 488−493. doi: 10.7511/dllgxb200704005

    CrossRef Google Scholar

    XUE D F, ZHOU L J, YAN X X. Preparation of magnesium oxide whiskers and examination of influencing factors[J]. Journal of Dalian University of Technology, 2007, 47(4): 488−493. doi: 10.7511/dllgxb200704005

    CrossRef Google Scholar

    [17] YAO J, SUN H R, YANG B, et al. Selective co-adsorption of a novel mixed collector onto magnesite surface to improve the flotation separation of magnesite from dolomite[J]. Powder Technol, 2020, 371: 180−189. doi: 10.1016/j.powtec.2020.05.098

    CrossRef Google Scholar

    [18] YAO J, SUN H R, HAN F, et al. Enhancing selectivity of modifier on magnesite and dolomite surfaces by pH control[J]. Powder Technol, 2020, 362: 698−706. doi: 10.1016/j.powtec.2019.12.040

    CrossRef Google Scholar

    [19] 时天骄, 王余莲, 刘珈伊, 等. 共沉淀法制备三水碳酸镁晶体及生长机理[J]. 中国粉体技术, 2021, 27(5): 120−127.

    Google Scholar

    SHI T J, WANG Y L, LIU J Y, et al. Preparation of magnesium carbonate crystals trihydrate by co-precipitation and growth mechanism[J]. Chinese powder technology, 2021, 27(5): 120−127.

    Google Scholar

    [20] WANG Y L, LIU J Y, SHI T J, et al. Synthesis, characterization and mechanism of porous spherical nesquehonite by CO2 biomimetic mineralization[J]. Advanced Powder Technology, 2022, 33(12).

    Google Scholar

    [21] WANG Y L, LIU J Y, SHI T J, et al. Preparation, properties and phase transition of mesoporous hydromagnesite with various morphologies from natural magnesite[J]. Powder Technol, 2020, 364: 822−830.

    Google Scholar

    [22] WANG Y L, LIU J Y, SHI T J, et al. Synthesis and pore structure construction mechanism of porous nesquehonite[J]. Powder Technol., 2022, 398: 117154.

    Google Scholar

    [23] 刘珈伊, 王余莲, 时天骄, 等. 菱镁矿气泡模板法制备三水碳酸镁晶体及其生长机理[J]. 矿产保护与利用, 2022, 42(2): 114−119. doi: 10.13779/j.cnki.issn1001-0076.2022.02.015

    CrossRef Google Scholar

    LIU J Y, WANG Y L, SHI T J, et al. Preparation of magnesium carbonate crystals trihydrate by magnesite bubble template method and its growth mechanism[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 114−119. doi: 10.13779/j.cnki.issn1001-0076.2022.02.015

    CrossRef Google Scholar

    [24] 靳宝庆, 王余莲, 欧昌锐, 等. 三水碳酸镁催化酚醛聚合制备多孔炭及其性能研究[J]. 矿产保护与利用, 2020, 40(2): 139−145.

    Google Scholar

    JIN B Q, WANG Y L, OU C R, et al. Magnesium carbonate trihydrate catalyzed phenolic polymerization to prepare porous carbon and its properties[J]. Mineral protection and utilization, 2020, 40(2): 139−145.

    Google Scholar

    [25] 李振兴, 陈建铭, 宋云华. 棒状氢氧化镁的合成[J]. 无机化学学报, 2010, 26(1): 8−12.

    Google Scholar

    LI Z X, CHEN J M, SONG Y H. Synthesis of rod-like magnesium hydroxide[J]. Journal of Inorganic Chemistry, 2010, 26(1): 8−12.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(530) PDF downloads(40) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint