Citation: | LIU Siyao, HE Jinxin, ZHONG Senlin, SHANG Kuiyuan, BAI Jinzhou, ZHAO Sikai, SHEN Yanbai. Gas Sensing Properties of CuO Nanoparticle—loaded Perovskite—type ZnSnO3 Microcubes[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 137-144. doi: 10.13779/j.cnki.issn1001-0076.2023.03.016 |
ZnSnO3 microcubes loaded with different concentrations of CuO nanoparticles were prepared by hydrothermal method. The crystal structure and micromorphology of the as-prepared products were characterized by means of XRD and SEM, and their ethanol sensing properties were investigated at different conditions. The structural characteristics results indicated that the edge length of ZnSnO3 microcubes was about 10 µm and exhibited good distribution and uniform morphology. CuO nanoparticles loaded on the microcubes had a diameter of approximately 50 nm and were uniformly distributed in ZnSnO3 microcubes. The gas sensing characteristic results indicated that the optimal ZnSnO3 microcubes loaded with CuO nanoparticles showed the highest response, good reproducibility and strong selectivity to ethanol at an operating temperature of 275 ℃. This work clarifies the sensitization mechanism of perovskite-type ZnSnO3 microcubes loaded with CuO nanoparticles to toxic and harmful gases, providing a high-performance material for detecting harmful gases in mining industry.
[1] | SHEN Y B, LI T T, ZHONG X X, et al. Ppb-level NO2 sensing properties of Au−doped WO3 nanosheets synthesized from a low−grade scheelite concentrate[J]. Vacuum, 2020, 172: 109036. doi: 10.1016/j.vacuum.2019.109036 |
[2] | ABDOLLAHISHARIF J, BAKHTAVAR E, NOURIZADEH H. Green biocompatible approach to reduce the toxic gases and dust caused by the blasting in surface mining[J]. Environmental Earth Sciences, 2016, 75: 191. doi: 10.1007/s12665-015-4947-9 |
[3] | 许雪梅, 李奔荣, 杨兵初, 等. 基于光声光谱技术的NO, NO2气体分析仪研究[J]. 物理学报, 2013, 62: 1−7. XU X M, LI P R, YANG B C, et al. Research on NO, NO2 gas analyzer based on photoacoustic spectroscopy[J]. Journal of Physics, 2013, 62: 1−7. |
[4] | LI T T, SHEN Y B, ZHAO S K, et al. Sub-ppm level NO2 sensing properties of polyethyleneimine−mediated WO3 nanoparticles synthesized by a one−pot hydrothermal method[J]. Journal of Alloys and Compounds, 2019, 783: 103−112. doi: 10.1016/j.jallcom.2018.12.287 |
[5] | 郑建军, 王卫忠, 任仲罕, 等. 某金矿有毒有害气体的来源组成及影响因素分析[J]. 金属矿山, 2013, 42: 148−150. ZHENG J J, WANG W Z, REN Z H, et al. Analysis of the source composition and influencing factors of toxic and hazardous gases in a gold mine[J]. Metal Mining, 2013, 42: 148−150. |
[6] | 桂阳海, 赵建波, 王焕新, 等. 水热法制备Co掺杂WO3气敏材料及其性能研究[J]. 电子元件与材料, 2012, 31: 26−29. GUI Y H, ZHAO J B, WANG H X, et al. Preparation and properties of Co−doped WO3 gas−sensitive materials by hydrothermal method[J]. Electronic Components and Materials, 2012, 31: 26−29. |
[7] | ZHAO S K, SHEN Y B, HAO F L, et al. P−n junctions based on CuO−decorated ZnO nanowires for ethanol sensing application[J]. Applied Surface Science, 2021, 538: 148140. doi: 10.1016/j.apsusc.2020.148140 |
[8] | ZHAO S K, SHEN Y B, MABOUDIAN R, et al. Facile synthesis of ZnO−SnO2 hetero−structured nanowires for high−performance NO2 sensing application[J] Sensors and Actuators B: Chemical, 2021, 333: 129613. |
[9] | LIU X, ZHANG H M, SONG Y, et al. Facile solvothermal synthesis of ZnO/Ti3C2Tx MXene nanocomposites for NO2 detection at low working temperature[J]. Sensors and Actuators B:Chemical, 2022, 367: 132025. doi: 10.1016/j.snb.2022.132025 |
[10] | GAUTAM V, KUMAR A, NAGPAL S, et al. Ultrasensitive detection of formaldehyde at room temperature using Si−chip assisted MOS/SiNWs nanocomposite based sensor[J]. Journal of Alloys and Compounds, 2022, 919: 165840. doi: 10.1016/j.jallcom.2022.165840 |
[11] | 沈岩柏, 张宝庆, 曹先敏, 等. 基片温度对WO3薄膜的微观结构和NO2气敏特性的影响[J]. 中国有色金属学报, 2015, 25: 740−746. SHEN Y B, ZHANG B Q, CAO X M, et al. Effect of substrate temperature on the microstructure and NO2 gas−sensitive properties of WO3 thin films[J]. Chinese Journal of Nonferrous Metals, 2015, 25: 740−746. |
[12] | WANG J, DENG H Y, LI X, et al. Visible−light photocatalysis enhanced room−temperature formaldehyde gas sensing by MoS2/rGO hybrids[J]. Sensors and Actuators B:Chemical, 2020, 304: 127317. doi: 10.1016/j.snb.2019.127317 |
[13] | LI T T, SHEN Y B, ZHAO S K, et al. Xanthate sensing properties of Pt functionalized WO3 microspheres synthesized by one-pot hydrothermal method[J]. Ceramics International, 2018, 44: 4814−4823. doi: 10.1016/j.ceramint.2017.12.069 |
[14] | 魏宇, 姜丰, 张雯. 钙钛矿基气敏传感材料研究进展[J]. 材料导报, 2023, 37: 27−35. WEI Y, JIANG F, ZHANG W. Research progress in perovskite-based gas sensing materials[J]. Materials Reports, 2023, 37: 27−35. |
[15] | WANG Z Y, ZHANG T, HAN T Y, et al. Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles reduced graphene oxide hybrids for ultrasensitive ppb−level room temperature NO2 sensing[J]. Sensors and Actuators B:Chemical, 2018, 266: 812−822. doi: 10.1016/j.snb.2018.03.169 |
[16] | LEE D, JUNG J, KIM K H, et al. Highly sensitive oxygen sensing characteristics observed in IGZO based gasistor in a mixed gas ambient at room temperature[J]. ACS Sensors, 2022, 7: 2567−2576. doi: 10.1021/acssensors.2c00484 |
[17] | BAI H N, GUO H, FENG C, et al. Light-activated ultrasensitive NO2 gas sensor based on heterojunctions of CuO nanospheres/MoS2 nanosheets at room temperature[J]. Sensors and Actuators B:Chemical, 2022, 368: 132131. doi: 10.1016/j.snb.2022.132131 |
[18] | HOU M C, DENG X W, WANG S P, et al. High energy facets and oxygen vacancies guided hierarchical tin dioxide microcubes assembled by cross−stacked nanoslices for ethanol gas−sensing[J]. Journal of Alloys and Compounds, 2022, 911: 164973. doi: 10.1016/j.jallcom.2022.164973 |
[19] | LIU Y P, ZHU L Y, FENG P, et al. Bimetallic Au/Pt alloy nanoparticles decorated on ZnO nanowires towards efficient and selective H2S gas sensing[J]. Sensors and Actuators B:Chemical, 2022, 367: 132024. doi: 10.1016/j.snb.2022.132024 |
[20] | LI G D, SHEN Y B, ZHOU P F, et al. Design and application of highly responsive and selective rGO−SnO2 nanocomposites for NO2 monitoring[J]. Materials Characterization, 2020, 163: 110284. doi: 10.1016/j.matchar.2020.110284 |
[21] | ZHANG Q B, ZHANG K L, XU D G, et al. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications[J]. Progress in Materials Science, 2014, 60: 208−337. doi: 10.1016/j.pmatsci.2013.09.003 |
[22] | 舒绍明, 刘邻明, 刘善堂, 等. 偏锡酸锌空心立方体的合成及其乙醇气敏性能[J]. 武汉工程大学学报. 2017, 39: 141−146. SHU S M, LIU L M, LIU S T, et al. Synthesis of hollow cubes of zinc meta stannate and its ethanol gas−sensitive properties [J]. Journal of Wuhan Engineering University. 2017, 39: 141−146. |
[23] | ZHANG W Q, LI G S, CHEN Y X, et al. Dynamic liquid phase deposition of doped nanostructured PANI tube sensor for trace−level NH3 gas detection[J]. Sensors and Actuators B: Chemical, 2020, 305: 127459. doi: 10.1016/j.snb.2019.127459 |
[24] | 徐宇兴, 谭强强, 唐子龙, 等. WO3基气敏传感器[J]. 化学进展, 2009, 21: 2734−2743. XU Y X, TAN Q Q, TANG Z L, et al. WO3-based gas-sensitive sensors[J]. Advances in Chemistry, 2009, 21: 2734−2743. |
[25] | 房家骅, 谭秋林, 方明, 等. 掺杂CNT的Fe2O3气体传感器对乙醇气敏特性的研究[J]. 传感技术学报, 2015, 28: 1115−1119. FANG J H, TAN Q L, FANG M, et al. Study of gas-sensitive characteristics of CNT-doped Fe2O3 gas sensors for ethanol[J]. Journal of Sensing Technology, 2015, 28: 1115−1119. |
[26] | SONG X M, YUAN C X, WANG Y M, et al. ZnO/CuO photoelectrode with n-p heterogeneous structure for photoelectron catalytic oxidation of formaldehyde[J]. Applied Surface Science, 2018, 455: 181−186. doi: 10.1016/j.apsusc.2018.05.196 |
[27] | WEI K F, ZHAO S K, ZHANG W, et al. Controllable synthesis of Zn-doped alpha-Fe2O3 nanowires for H2S sensing[J]. Nanomaterials, 2019, 9: 994. doi: 10.3390/nano9070994 |
Preparation process of ZnSnO3 nanocubes
Preparation process of CuO-loaded ZnSnO3 microcubes
SEM images of ZnSnO3 microcubes with different concentrations of CuO nanoparticles (a,b) ZnSnO3; (c,d) 0.5−CuO−ZnSnO3; (e,f) 1.0−CuO−ZnSnO3; (g,h) 1.5−CuO−ZnSnO3; (i,j) 2.0−CuO−ZnSnO3
XRD patterns of ZnSnO3 microcubes with different concentrations of CuO nanoparticles (a) ZnSnO3; (b) 0.5−CuO−ZnSnO3; (c) 1.0−CuO−ZnSnO3; (d) 1.5−CuO−ZnSnO3; (e) 2.0−CuO−ZnSnO3
Response-recovery curves of ZnSnO3 microcubes to 1.0×10−2% ethanol at different operating temperatures
Response-recovery curves of ZnSnO3 microcubes with different concentrations of CuO nanoparticles to 1.0×10−2% ethanol at different operating temperatures (a) 0.5−CuO−ZnSnO3; (b) 1.0−CuO−ZnSnO3; (c) 1.5−CuO−ZnSnO3; (d) 2.0−CuO−ZnSnO3
Responses of ZnSnO3 and 1.5−CuO−ZnSnO3 samples to 1.0×10−2% ethanol at different operating temperatures
(a) Response-recovery curves and (b) responses of 1.5−CuO−ZnSnO3 sample to different concentrations of ethanol at 275 ℃
Responses of 1.5−CuO−ZnSnO3 sample to different gases at 275 ℃
Reproducibility of 1.5−CuO−ZnSnO3 sample to 1.0×10−2% ethanol at 275 ℃