Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

LIU Siyao, HE Jinxin, ZHONG Senlin, SHANG Kuiyuan, BAI Jinzhou, ZHAO Sikai, SHEN Yanbai. Gas Sensing Properties of CuO Nanoparticle—loaded Perovskite—type ZnSnO3 Microcubes[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 137-144. doi: 10.13779/j.cnki.issn1001-0076.2023.03.016
Citation: LIU Siyao, HE Jinxin, ZHONG Senlin, SHANG Kuiyuan, BAI Jinzhou, ZHAO Sikai, SHEN Yanbai. Gas Sensing Properties of CuO Nanoparticle—loaded Perovskite—type ZnSnO3 Microcubes[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 137-144. doi: 10.13779/j.cnki.issn1001-0076.2023.03.016

Gas Sensing Properties of CuO Nanoparticle—loaded Perovskite—type ZnSnO3 Microcubes

More Information
  • Corresponding author: SHEN Yanbai
  • ZnSnO3 microcubes loaded with different concentrations of CuO nanoparticles were prepared by hydrothermal method. The crystal structure and micromorphology of the as-prepared products were characterized by means of XRD and SEM, and their ethanol sensing properties were investigated at different conditions. The structural characteristics results indicated that the edge length of ZnSnO3 microcubes was about 10 µm and exhibited good distribution and uniform morphology. CuO nanoparticles loaded on the microcubes had a diameter of approximately 50 nm and were uniformly distributed in ZnSnO3 microcubes. The gas sensing characteristic results indicated that the optimal ZnSnO3 microcubes loaded with CuO nanoparticles showed the highest response, good reproducibility and strong selectivity to ethanol at an operating temperature of 275 ℃. This work clarifies the sensitization mechanism of perovskite-type ZnSnO3 microcubes loaded with CuO nanoparticles to toxic and harmful gases, providing a high-performance material for detecting harmful gases in mining industry.

  • 加载中
  • [1] SHEN Y B, LI T T, ZHONG X X, et al. Ppb-level NO2 sensing properties of Au−doped WO3 nanosheets synthesized from a low−grade scheelite concentrate[J]. Vacuum, 2020, 172: 109036. doi: 10.1016/j.vacuum.2019.109036

    CrossRef Google Scholar

    [2] ABDOLLAHISHARIF J, BAKHTAVAR E, NOURIZADEH H. Green biocompatible approach to reduce the toxic gases and dust caused by the blasting in surface mining[J]. Environmental Earth Sciences, 2016, 75: 191. doi: 10.1007/s12665-015-4947-9

    CrossRef Google Scholar

    [3] 许雪梅, 李奔荣, 杨兵初, 等. 基于光声光谱技术的NO, NO2气体分析仪研究[J]. 物理学报, 2013, 62: 1−7.

    Google Scholar

    XU X M, LI P R, YANG B C, et al. Research on NO, NO2 gas analyzer based on photoacoustic spectroscopy[J]. Journal of Physics, 2013, 62: 1−7.

    Google Scholar

    [4] LI T T, SHEN Y B, ZHAO S K, et al. Sub-ppm level NO2 sensing properties of polyethyleneimine−mediated WO3 nanoparticles synthesized by a one−pot hydrothermal method[J]. Journal of Alloys and Compounds, 2019, 783: 103−112. doi: 10.1016/j.jallcom.2018.12.287

    CrossRef Google Scholar

    [5] 郑建军, 王卫忠, 任仲罕, 等. 某金矿有毒有害气体的来源组成及影响因素分析[J]. 金属矿山, 2013, 42: 148−150.

    Google Scholar

    ZHENG J J, WANG W Z, REN Z H, et al. Analysis of the source composition and influencing factors of toxic and hazardous gases in a gold mine[J]. Metal Mining, 2013, 42: 148−150.

    Google Scholar

    [6] 桂阳海, 赵建波, 王焕新, 等. 水热法制备Co掺杂WO3气敏材料及其性能研究[J]. 电子元件与材料, 2012, 31: 26−29.

    Google Scholar

    GUI Y H, ZHAO J B, WANG H X, et al. Preparation and properties of Co−doped WO3 gas−sensitive materials by hydrothermal method[J]. Electronic Components and Materials, 2012, 31: 26−29.

    Google Scholar

    [7] ZHAO S K, SHEN Y B, HAO F L, et al. P−n junctions based on CuO−decorated ZnO nanowires for ethanol sensing application[J]. Applied Surface Science, 2021, 538: 148140. doi: 10.1016/j.apsusc.2020.148140

    CrossRef Google Scholar

    [8] ZHAO S K, SHEN Y B, MABOUDIAN R, et al. Facile synthesis of ZnO−SnO2 hetero−structured nanowires for high−performance NO2 sensing application[J] Sensors and Actuators B: Chemical, 2021, 333: 129613.

    Google Scholar

    [9] LIU X, ZHANG H M, SONG Y, et al. Facile solvothermal synthesis of ZnO/Ti3C2Tx MXene nanocomposites for NO2 detection at low working temperature[J]. Sensors and Actuators B:Chemical, 2022, 367: 132025. doi: 10.1016/j.snb.2022.132025

    CrossRef Google Scholar

    [10] GAUTAM V, KUMAR A, NAGPAL S, et al. Ultrasensitive detection of formaldehyde at room temperature using Si−chip assisted MOS/SiNWs nanocomposite based sensor[J]. Journal of Alloys and Compounds, 2022, 919: 165840. doi: 10.1016/j.jallcom.2022.165840

    CrossRef Google Scholar

    [11] 沈岩柏, 张宝庆, 曹先敏, 等. 基片温度对WO3薄膜的微观结构和NO2气敏特性的影响[J]. 中国有色金属学报, 2015, 25: 740−746.

    Google Scholar

    SHEN Y B, ZHANG B Q, CAO X M, et al. Effect of substrate temperature on the microstructure and NO2 gas−sensitive properties of WO3 thin films[J]. Chinese Journal of Nonferrous Metals, 2015, 25: 740−746.

    Google Scholar

    [12] WANG J, DENG H Y, LI X, et al. Visible−light photocatalysis enhanced room−temperature formaldehyde gas sensing by MoS2/rGO hybrids[J]. Sensors and Actuators B:Chemical, 2020, 304: 127317. doi: 10.1016/j.snb.2019.127317

    CrossRef Google Scholar

    [13] LI T T, SHEN Y B, ZHAO S K, et al. Xanthate sensing properties of Pt functionalized WO3 microspheres synthesized by one-pot hydrothermal method[J]. Ceramics International, 2018, 44: 4814−4823. doi: 10.1016/j.ceramint.2017.12.069

    CrossRef Google Scholar

    [14] 魏宇, 姜丰, 张雯. 钙钛矿基气敏传感材料研究进展[J]. 材料导报, 2023, 37: 27−35.

    Google Scholar

    WEI Y, JIANG F, ZHANG W. Research progress in perovskite-based gas sensing materials[J]. Materials Reports, 2023, 37: 27−35.

    Google Scholar

    [15] WANG Z Y, ZHANG T, HAN T Y, et al. Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles reduced graphene oxide hybrids for ultrasensitive ppb−level room temperature NO2 sensing[J]. Sensors and Actuators B:Chemical, 2018, 266: 812−822. doi: 10.1016/j.snb.2018.03.169

    CrossRef Google Scholar

    [16] LEE D, JUNG J, KIM K H, et al. Highly sensitive oxygen sensing characteristics observed in IGZO based gasistor in a mixed gas ambient at room temperature[J]. ACS Sensors, 2022, 7: 2567−2576. doi: 10.1021/acssensors.2c00484

    CrossRef Google Scholar

    [17] BAI H N, GUO H, FENG C, et al. Light-activated ultrasensitive NO2 gas sensor based on heterojunctions of CuO nanospheres/MoS2 nanosheets at room temperature[J]. Sensors and Actuators B:Chemical, 2022, 368: 132131. doi: 10.1016/j.snb.2022.132131

    CrossRef Google Scholar

    [18] HOU M C, DENG X W, WANG S P, et al. High energy facets and oxygen vacancies guided hierarchical tin dioxide microcubes assembled by cross−stacked nanoslices for ethanol gas−sensing[J]. Journal of Alloys and Compounds, 2022, 911: 164973. doi: 10.1016/j.jallcom.2022.164973

    CrossRef Google Scholar

    [19] LIU Y P, ZHU L Y, FENG P, et al. Bimetallic Au/Pt alloy nanoparticles decorated on ZnO nanowires towards efficient and selective H2S gas sensing[J]. Sensors and Actuators B:Chemical, 2022, 367: 132024. doi: 10.1016/j.snb.2022.132024

    CrossRef Google Scholar

    [20] LI G D, SHEN Y B, ZHOU P F, et al. Design and application of highly responsive and selective rGO−SnO2 nanocomposites for NO2 monitoring[J]. Materials Characterization, 2020, 163: 110284. doi: 10.1016/j.matchar.2020.110284

    CrossRef Google Scholar

    [21] ZHANG Q B, ZHANG K L, XU D G, et al. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications[J]. Progress in Materials Science, 2014, 60: 208−337. doi: 10.1016/j.pmatsci.2013.09.003

    CrossRef Google Scholar

    [22] 舒绍明, 刘邻明, 刘善堂, 等. 偏锡酸锌空心立方体的合成及其乙醇气敏性能[J]. 武汉工程大学学报. 2017, 39: 141−146.

    Google Scholar

    SHU S M, LIU L M, LIU S T, et al. Synthesis of hollow cubes of zinc meta stannate and its ethanol gas−sensitive properties [J]. Journal of Wuhan Engineering University. 2017, 39: 141−146.

    Google Scholar

    [23] ZHANG W Q, LI G S, CHEN Y X, et al. Dynamic liquid phase deposition of doped nanostructured PANI tube sensor for trace−level NH3 gas detection[J]. Sensors and Actuators B: Chemical, 2020, 305: 127459. doi: 10.1016/j.snb.2019.127459

    CrossRef Google Scholar

    [24] 徐宇兴, 谭强强, 唐子龙, 等. WO3基气敏传感器[J]. 化学进展, 2009, 21: 2734−2743.

    Google Scholar

    XU Y X, TAN Q Q, TANG Z L, et al. WO3-based gas-sensitive sensors[J]. Advances in Chemistry, 2009, 21: 2734−2743.

    Google Scholar

    [25] 房家骅, 谭秋林, 方明, 等. 掺杂CNT的Fe2O3气体传感器对乙醇气敏特性的研究[J]. 传感技术学报, 2015, 28: 1115−1119.

    Google Scholar

    FANG J H, TAN Q L, FANG M, et al. Study of gas-sensitive characteristics of CNT-doped Fe2O3 gas sensors for ethanol[J]. Journal of Sensing Technology, 2015, 28: 1115−1119.

    Google Scholar

    [26] SONG X M, YUAN C X, WANG Y M, et al. ZnO/CuO photoelectrode with n-p heterogeneous structure for photoelectron catalytic oxidation of formaldehyde[J]. Applied Surface Science, 2018, 455: 181−186. doi: 10.1016/j.apsusc.2018.05.196

    CrossRef Google Scholar

    [27] WEI K F, ZHAO S K, ZHANG W, et al. Controllable synthesis of Zn-doped alpha-Fe2O3 nanowires for H2S sensing[J]. Nanomaterials, 2019, 9: 994. doi: 10.3390/nano9070994

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(431) PDF downloads(26) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint