Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

GAO Shuling, ZHOU Xiaohong, WANG Qian, LIU Wenbao. Evolution Characteristic of Slurry Flow Field Parameters and Particles Separation Behavior in Spirals with Rough Wall[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 127-136. doi: 10.13779/j.cnki.issn1001-0076.2023.03.015
Citation: GAO Shuling, ZHOU Xiaohong, WANG Qian, LIU Wenbao. Evolution Characteristic of Slurry Flow Field Parameters and Particles Separation Behavior in Spirals with Rough Wall[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 127-136. doi: 10.13779/j.cnki.issn1001-0076.2023.03.015

Evolution Characteristic of Slurry Flow Field Parameters and Particles Separation Behavior in Spirals with Rough Wall

More Information
  • Using RNG k−ε turbulence model, VOF multiphase flow model and Eulerian Multi−fluid VOF model, the flow field and particle motion behavior in spirals were numerically simulated. The evolution characteristics of water flow field parameters, hematite−quartz slurry flow field parameters, particle distribution and separation efficiency with the turn number of fluid flows through the trough under conditions of smooth wall as well as rough wall were systematically investigated. It was shown that in comparison to the water system, local bulges were observed in the slurry flow film, accompanied by an increase in the tangential velocity of the slurry fluid in the inner edge region and a decrease in the tangential velocity at the middle and outer edges. The radial velocity distribution exhibited noticeable fluctuation characteristics. Compared to the condition of smooth wall, that of rough wall resulted in a reduction of bulges height of the slurry flow film. Additionally, the tangential velocity of the slurry was generally higher, and the difference in tangential velocity at the inner edge of the slurry was smaller. The intensity of the internal circulation weakened while the intensity of the external circulation strengthened. When the longitudinal path of the fluid reached the third turn, the radial distribution difference of flow field parameters were reduced and became similar. Compared with the condition of smooth wall, the distribution of hematite particles decreased in the inner half trough under the condition of rough wall , and the inward migration amount increased with the turn number of fluid flows through the trough, but the amount of stay in the outermost micro−region of the outer edge also increased. Quartz particles formed more distribution in the middle area of the trough of the third turn gradually with the flow field evolution. The maximum separation efficiency of hematite and quartz increased with the turn number of fluid flows through the trough and achieved balance gradually. The maximum separation efficiency of hematite and quartz decreased under the condition of rough wall. It is found that rough wall affected the slurry flow field and particles separation behavior of spirals significantly within the scope of this research, which could provide a reference for the wall roughness design and process control of spirals.

  • 加载中
  • [1] 王国法, 任世华, 庞义辉, 等. 我国智能绿色矿业发展战略研究[J]. 煤炭经济研究, 2021, 41(12): 4−10.

    Google Scholar

    WANG G F, REN S H, PANG Y H, et al. Research on development strategy of intelligent green mining industry in China[J]. Coal Economic Research, 2021, 41(12): 4−10.

    Google Scholar

    [2] 寿嘉华. 走绿色矿业之路——西部大开发矿产资源发展战略思考[J]. 中国地质, 2000(12): 2−3+6.

    Google Scholar

    SHOU J H. Taking the road of green mining − strategic thinking on the development of mineral resources in the western development[J]. Geology in China 2000(12): 2−3+6.

    Google Scholar

    [3] 伍伟, 尹琼, 任卓隽, 等. 国内外绿色矿业发展历程及策略[J]. 现代矿业, 2021, 37(2): 1−4. doi: 10.3969/j.issn.1674-6082.2021.02.001

    CrossRef Google Scholar

    WU W, YIN Q, REN Z J, et al. The development hhistory and strategy of green mining at home and abroad[J]. Modern Mining, 2021, 37(2): 1−4. doi: 10.3969/j.issn.1674-6082.2021.02.001

    CrossRef Google Scholar

    [4] 陆占国. 强化鞍山式赤铁矿分级−重选工艺试验研究[C]//第二十三届辽鲁冀晋粤川京七省市金属学会矿业学术交流会论文集. 辽宁省金属学会、山东金属学会、河北省冶金学会、等, 2016: 167−170.

    Google Scholar

    LU Z G. Research on improving the classification−gravity separation technology for Anshan−type hematite ore[C]// Proceedings of the 23rd Liaoning, Shandong, Hebei, Shanxi, Guangdong, Sichuan, and Beijing Metallurgical Society Mining Academic Exchange Conference. Liaoning Province Society for Metals、Shandong Society for Metals、Metallurgy of Hebei Province、 et al, 2016: 167−170.

    Google Scholar

    [5] 刘惠中, 吴华冬. 螺旋选矿设备的应用现状及展望[J]. 有色金属(选矿部分), 2022(5): 151−158.

    Google Scholar

    LIU H Z, WU H D. Application and prospect of spiral concentrator[J]. Nonferrous Metals(Mineral Processing Section), 2022(5): 151−158.

    Google Scholar

    [6] SIVRIKAYA O. Cleaning study of a low−rank lignite with DMS, Reichert spiral and flotation[J]. Fuel, 2014, 119: 252−258. doi: 10.1016/j.fuel.2013.11.061

    CrossRef Google Scholar

    [7] 沈新春, 古吉汉, 黄云松. 螺旋选矿设备在钨选矿中的应用研究现状[J]. 矿山机械, 2017, 45(10): 44−49. doi: 10.3969/j.issn.1001-3954.2017.10.012

    CrossRef Google Scholar

    SHEN X C, GU J H, HUANG Y S. Research status on application of spiral dressing equipments in tungsten ore beneficiation[J]. Mining & Processing Equipment, 2017, 45(10): 44−49. doi: 10.3969/j.issn.1001-3954.2017.10.012

    CrossRef Google Scholar

    [8] 马崇振, 张华, 梁汉. 螺旋溜槽发展现状及在海滨砂矿中的应用实践[J]. 湖南有色金属, 2020, 36(1): 18−22. doi: 10.3969/j.issn.1003-5540.2020.01.006

    CrossRef Google Scholar

    MA C Z, ZHANG H, LIANG H. Current situation of spiral chute and its application in beach placer[J]. Hunan Nonferrous Metals, 2020, 36(1): 18−22. doi: 10.3969/j.issn.1003-5540.2020.01.006

    CrossRef Google Scholar

    [9] DAVIES P O J, GOODMAN R H, DESCHAMPS J A. Recent developments in spiral design, construction and application[J]. Minerals Engineering, 1991, 4(3-4): 437−456. doi: 10.1016/0892-6875(91)90146-M

    CrossRef Google Scholar

    [10] ROMEIJN T, BEHRENS M, PAUL G, et al. Experimental analysis of water and slurry flows in gravity−driven helical mineral separators[J]. Powder Technology, 2022, 405: 117538. doi: 10.1016/j.powtec.2022.117538

    CrossRef Google Scholar

    [11] KAYA F, KARAGOZ I, AVCI A. Effects of Surface Roughness on the Performance of Tangential Inlet Cyclone Separators[J]. Aerosol Science and Technology, 2011, 45(8): 988−995. doi: 10.1080/02786826.2011.574174

    CrossRef Google Scholar

    [12] ZHAO Q, CUI B Y, HOU D X, et al. Effects of wall roughness on the separation performance of hydrocyclones under different inlet conditions[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11251−11266.

    Google Scholar

    [13] ZHOU F Q, SUN G G, ZHANG Y M, et al. Experimental and CFD study on the effects of surface roughness on cyclone performance[J]. Separation and Purification Technology, 2018, 193: 175−183. doi: 10.1016/j.seppur.2017.11.017

    CrossRef Google Scholar

    [14] DEHDARINEJAD E, BAYAREH M. Impact of non−uniform surface roughness on the erosion rate and performance of a cyclone separator[J]. Chemical Engineering Science, 2022, 249: 117351. doi: 10.1016/j.ces.2021.117351

    CrossRef Google Scholar

    [15] ARNOLD D J, STOKES Y M, GREEN J E F. Thin−film flow in helically wound shallow channels of arbitrary cross−sectional shape[J]. Physics of Fluids, 2017, 29(1): 013102. doi: 10.1063/1.4973670

    CrossRef Google Scholar

    [16] 王书礼, 王磊, 初福栋, 等. 一种鱼鳞状槽面的螺旋溜槽: CN202121485750.4[P]. 2021−11−23.

    Google Scholar

    WANG S L, WANG L, CHU F D, et al. A spirals with a fish scale shaped groove surface: CN202121485750.4[P]. 2021−11−23.

    Google Scholar

    [17] M. A. DOHEIM, A. F. ABDEL GAWAD, G. M. A. MAHRAN, et al. Numerical simulation of particulate−flow in spiral separators: Part I. Low solids concentration (0.3% & 3% solids)[J]. Applied Mathematical Modelling, 2013, 37(1/2): 198−215.

    Google Scholar

    [18] G. M. A MAHRAN, M. A DOHEIM, A. F. ABDEL GAWAD, et al. Numerical simulation of particulate−flow in spiral separators (15 % solids)[J]. Afinidad:Revista de Quimica Teorica y Aplicada, 2015, 72(571): 223−229.

    Google Scholar

    [19] YE G C, LIU Q X, MA L Q, et al. CFD−DEM investigation of fluid and particle motion behaviors in initial stage of spiral separation process at low solids concentration[J]. Mineral Processing and Extractive Metallurgy Review, 2022: 1−6.

    Google Scholar

    [20] WANG J H, LUO J, HUANG S X, et al. Numerical simulation of single aluminum droplet evaporation based on VOF method[J]. Case Studies in Thermal Engineering, 2022, 34: 102008. doi: 10.1016/j.csite.2022.102008

    CrossRef Google Scholar

    [21] HUO J L, WANG Z, LUAN X Y, et al. The CFD modeling of bund overtopping phenomena and prediction of dynamic pressure on the bund[J]. Journal of Loss Prevention in the Process Industries, 2022, 74: 104653. doi: 10.1016/j.jlp.2021.104653

    CrossRef Google Scholar

    [22] MENG L G, GAO S L, WEI D Z, et al. Particulate flow modelling in a spiral separator by using the Eulerian multi−fluid VOF approach[J]. International Journal of Mining Science and Technology, 2023, 33(2): 251−263. doi: 10.1016/j.ijmst.2022.09.016

    CrossRef Google Scholar

    [23] PATTANAPOL W, WAKES S J, HILTON M J, et al. Modeling of surface roughness for flow over a complex vegetated surface[J]. 2007, 26: 273−281. .

    Google Scholar

    [24] CEBECI T, BRADSHAW P. Momentum Transfer in Boundary Layers[M]. Hemisphere Pub. Corp, 1977.

    Google Scholar

    [25] MISHRA B K, TRIPATHY A. A preliminary study of particle separation in spiral concentrators using DEM[J]. International Journal of Mineral Processing, 2010, 94(3/4): 192−195.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(267) PDF downloads(30) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint