Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

JIN Guojie, SUN Yongsheng, CAO Yue. Study on Characteristics of Biomass Pyrolysis Gasification During Magnetization Roasting of Hematite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 67-74. doi: 10.13779/j.cnki.issn1001-0076.2023.03.007
Citation: JIN Guojie, SUN Yongsheng, CAO Yue. Study on Characteristics of Biomass Pyrolysis Gasification During Magnetization Roasting of Hematite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 67-74. doi: 10.13779/j.cnki.issn1001-0076.2023.03.007

Study on Characteristics of Biomass Pyrolysis Gasification During Magnetization Roasting of Hematite

More Information
  • Corresponding author: SUN Yongsheng  
  • The magnetization roasting process is one of the effective ways to treat complex and refractory iron ores. However, energy and reducing agents are required during its production process. As a clean energy source, biomass can be thermally decomposed to produce CO, CO2, CH4, and H2, among which CO, CH4, and H2 can be used as reducing agents in the magnetization roasting process of iron ore, achieving clean production. Using corn straw and hematite as raw materials, the thermal decomposition and gasification characteristics of straw biomass were investigated during magnetization roasting. Gas composition analysis results showed that under the magnetization roasting conditions of 700 ℃, N2 flow rate of 300 mL/min, and straw-hematite mass ratio of 1∶3, the maximum production of COx reached 277.45 mL, indicating the optimal thermal decomposition effect of straw. TG−FTIR analysis results showed that hematite did not change the type of straw pyrolysis products, but altered the release characteristics and production of the products. In the magnetization roasting process above 800 ℃, the DTG curve exhibited a second weight loss peak, indicating a significant increase in the reaction rate of straw thermal decomposition during magnetization roasting.

  • 加载中
  • [1] 韩跃新, 孙永升, 李艳军, 等. 我国铁矿选矿技术最新进展[J]. 金属矿山, 2015(2): 1−11.

    Google Scholar

    HAN Y X, SUN Y S, LI Y J, et al. Latest progress of mineral processing technology of iron ore[J]. Metal Mine, 2015(2): 1−11.

    Google Scholar

    [2] 孙永升, 曹越, 韩跃新, 等. 磁化焙烧冷却过程中磁铁矿氧化动力学[J]. 东北大学学报(自然科学版), 2018, 39(12): 1759−1763. doi: 10.12068/j.issn.1005-3026.2018.12.017

    CrossRef Google Scholar

    SUN Y S, CAO Y, HAN Y X, et al. Oxidation kinetics of magnetite during magnetization roasting and cooling[J]. Journal of Northeastern University (Natural Science), 2018, 39(12): 1759−1763. doi: 10.12068/j.issn.1005-3026.2018.12.017

    CrossRef Google Scholar

    [3] 韩跃新, 李艳军, 高鹏, 等. 复杂难选铁矿石悬浮磁化焙烧-高效分选技术[J]. 钢铁研究学报, 2019, 31(2): 89−94. doi: 10.13228/j.boyuan.issn1001-0963.20180329

    CrossRef Google Scholar

    HAN Y X, LI Y J, GAO P, et al. Suspension magnetization roasting and high efficiency separation technology of complex refractory iron ore[J]. Journal of Iron and Steel Research, 2019, 31(2): 89−94. doi: 10.13228/j.boyuan.issn1001-0963.20180329

    CrossRef Google Scholar

    [4] 张波, 刘锐, 张岩. 合成气组分对生物质热解特性的影响研究[J]. 山西化工, 2022, 42(6): 507−515.

    Google Scholar

    ZHANG B, LIU R, ZHANG Y. Effect of syngas components on pyrolysis characteristics of biomass[J]. Shanxi Chemical Industry, 2022, 42(6): 507−515.

    Google Scholar

    [5] CAO Y, SUN Y S, GAO P, et al. Mechanism for suspension magnetization roasting of iron ore using straw-type biomass reductant[J]. International Journal of Mining Science and Technology, 2021, 31: 1075–1083.

    Google Scholar

    [6] 李保卫, 李解, 杨仲禹, 等. 玉米秸秆热解特性及动力学研究[J]. 太阳能学报, 2017, 38(12): 3444−3449.

    Google Scholar

    LI B W, LI X, YANG Z Y, et al. Pyrolysis characteristics and kinetics of corn straw[J]. Acta Solar Energy Sinica, 2017, 38(12): 3444−3449.

    Google Scholar

    [7] 黄娜, 高岱巍, 李建伟, 等. 生物质三组分热解反应及动力学的比较[J]. 北京化工大学学报(自然科学版), 2007(5): 462−466. doi: 10.13543/j.cnki.bhxbzr.2007.05.019

    CrossRef Google Scholar

    HUANG N, GAO D W, LI J W, et al. Comparison of pyrolysis reaction and kinetics of three components of biomass[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2007(5): 462−466. doi: 10.13543/j.cnki.bhxbzr.2007.05.019

    CrossRef Google Scholar

    [8] 汪永斌, 朱国才, 池汝安, 等. 生物质还原磁化褐铁矿的实验研究[J]. 过程工程学报, 2009, 9(3): 508−513. doi: 10.3321/j.issn:1009-606X.2009.03.016

    CrossRef Google Scholar

    WANG Y B, ZHU G C, CHI R A, et al. Experimental study on magnetization of limonite by biomass reduction[J]. Chinese Journal of Process Engineering, 2009, 9(3): 508−513. doi: 10.3321/j.issn:1009-606X.2009.03.016

    CrossRef Google Scholar

    [9] 黄冬波, 宗燕兵, 邓振强, 等. 鲕状赤铁矿生物质低温磁化焙烧[J]. 工程科学学报, 2015, 37(10): 1260−1267.

    Google Scholar

    HUANG D B, ZONG Y B, DENG Z Q, et al. Low temperature magnetization roasting of oolitic hematite biomass[J]. Chinese Journal of Engineering Science, 2015, 37(10): 1260−1267.

    Google Scholar

    [10] 张士元, 冯雅丽, 李浩然. 生物质磁化焙烧赤铁矿的研究[J]. 矿业工程, 2016, 14(4): 31−33. doi: 10.3969/j.issn.1671−8550.2016.04.011

    CrossRef Google Scholar

    ZHANG S Y, FENG Y L, LI H R. Research on magnetized roasting of hematite by biomass[J]. Mining Engineering, 2016, 14(4): 31−33. doi: 10.3969/j.issn.1671−8550.2016.04.011

    CrossRef Google Scholar

    [11] SWAGAT S. RATH, DANDA SRINIVAS RAO, ALOK TRIPATHY, et alBiomass briquette as an alternative reductant for low grade iron ore resources[J]. Biomass and Bioenergy, 2018, 108.

    Google Scholar

    [12] SWAGAT S. RATH, DANDA S. RAO, BARADA K, et alA novel approach for reduction roasting of iron ore slime using cow dung[J]. International Journal of Mineral Processing, 2016, 157.

    Google Scholar

    [13] SWAGAT S. RATH, DANDA, SRINIVAS, et alDolochar as a Reductant in the Reduction Roasting of Iron Ore Slimes[J]. International Journal of Minerals, Metallurgy and Mate, 2017, 24(12): 1341−351.

    Google Scholar

    [14] ZHANG Y, SHIRO KAJITANI, MASAMI ASHIZAWA, et al. Tar destruction and coke formation during rapid pyrolysis and gasificationof biomass in a drop-tube furnace[J]. Fue, 2010, 89: 302−309.

    Google Scholar

    [15] ANTAL M J, FRIEDMAN H L, ROGERS F E. Kinetics of cellulose pyrolysis in nitrogen and steam[J]. Combustion Science and Technology, 1980, 21: 141 152.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(5)

Article Metrics

Article views(719) PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint