Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 2
Article Contents

JI Denghui, LUO Wenbo, LONG Xiao, XIANG Chun, WANG Xiaofu. Experiment of Al2O3 Extraction from the Activated Red Mud and Coal Gangue[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 142-147. doi: 10.13779/j.cnki.issn1001-0076.2023.02.022
Citation: JI Denghui, LUO Wenbo, LONG Xiao, XIANG Chun, WANG Xiaofu. Experiment of Al2O3 Extraction from the Activated Red Mud and Coal Gangue[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 142-147. doi: 10.13779/j.cnki.issn1001-0076.2023.02.022

Experiment of Al2O3 Extraction from the Activated Red Mud and Coal Gangue

  • Red mud and coal gangue contain a large amount of aluminum, which can be used as a substitute of bauxite. The mixture of red mud and coal gangue with the addition of sodium carbonate and calcium carbonate were calcinated in high-temperature, resulting in the insoluble alumina and silicon dioxide in the minerals transformed into soluble sodium aluminate and insoluble calcium silicate respectively, through activating red mud and coal gangue by alkali in red mud, sodium carbonate and calcium carbonate. Furthermore, the aluminum was extracted by alkali leaching from the calcined product. The optimum calcination parameters was a temperature of 1250 ℃, a calcination time of 45 min, a Na2O/(Al2O3+Fe2O3) molar ratio of 1.1∶1, and CaO/SiO2 molar ratio of 2∶1, and the leaching rate of aluminum reached 78.45% with a higher conversion rate of alumina in red mud and coal gangue. The process takes advantage of the residual alkali in red mud and significantly reduces the dosage of reagents such as sodium carbonate, thereby reducing production costs and environmental pollution.

  • 加载中
  • [1] 任根宽. 煤矸石提取氧化铝活化过程的研究[J]. 非金属矿, 2012, 35(2): 50−52. doi: 10.3969/j.issn.1000-8098.2012.02.016

    CrossRef Google Scholar

    REN G K. Study on activation process of extraction of alumina from coal gangue[J]. Non-Metallic Mines, 2012, 35(2): 50−52. doi: 10.3969/j.issn.1000-8098.2012.02.016

    CrossRef Google Scholar

    [2] DU S L, MAO S B, GUO F Q, et al. Investigation of the catalytic performance of coal gangue char on biomass pyrolysis in a thermogravimetric analyzer and a fixed bed reactor[J]. Fuel, 2022, 328: 1−10.

    Google Scholar

    [3] 边炳鑫, 李哲, 解强. 煤系固体废物资源化技术[M]. 北京: 化学工业出版社, 2019.

    Google Scholar

    BIAN B X, LI Z, XIE Q. Coal measures solid waste resource technology[M]. Beijing: Chemical Industry Press, 2019.

    Google Scholar

    [4] LI D, WU D, XU F, et al. Literature overview of Chinese research in the field of better coal utilization[J]. J Cleaner Prod, 2018, 185: 959−80. doi: 10.1016/j.jclepro.2018.02.216

    CrossRef Google Scholar

    [5] LI M S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A Review of Research and Practice[J]. Sci Total Environ, 2006, 357(1/2/3): 38−53.

    Google Scholar

    [6] QIN Q Z, DENG J S, GENG H H, et al. An exploratory study on strategic metal recovery of coal gangue and sustainable utilization potential of recovery residue[J]. Journal of Cleaner Production, 2022, 340: 130765−130777. doi: 10.1016/j.jclepro.2022.130765

    CrossRef Google Scholar

    [7] GUO Z H, XU J J, XU Z H, et al. Performance of cement-based materials containing calcined coal gangue with different calcination regimes[J]. Journal of Building Engineering, 2022, 56: 104293−104308.

    Google Scholar

    [8] GUAN X, CHEN J X, ZHU M Y, et al. Performance of microwave-activated coal gangue powder as auxiliary cementitious material[J]. Journal of Materials Research and technology, 2021, 14: 2799−2811. doi: 10.1016/j.jmrt.2021.08.106

    CrossRef Google Scholar

    [9] SHAKE M A, BASSAM A T, HEMN U A, et al. A review of the sustainable utilisation of red mud and fly ash for the production of geopolymer composites[J]. Construction and Building Materials, 2022, 350: 128892−128915. doi: 10.1016/j.conbuildmat.2022.128892

    CrossRef Google Scholar

    [10] 龙昌鑫, 方琴, 杨小洁, 等. 赤泥基本性能及赤泥混凝土力学性能研究[J]. 中国水运, 2021, 21(10): 126−127+130.

    Google Scholar

    LONG C X, FANG Q, YANG X J, et al. Study on basic properties of red mud and mechanical properties of red mud concrete[J]. China Water Transport, 2021, 21(10): 126−127+130.

    Google Scholar

    [11] JUNG K H, KANG S P, CHOE G C. Effect of red mud content on strength and efflorescence in pavement using alkali-activated slag cement[J]. International Journal of Concrete Structures and Materials, 2018, 12(1): 18−31. doi: 10.1186/s40069-018-0258-3

    CrossRef Google Scholar

    [12] 陈一铭. 赤泥作为建筑材料的利用现状分析[J]. 河南建材, 2022(11): 16−18. doi: 10.3969/j.issn.1008-9772.2022.11.hnjc202211006

    CrossRef Google Scholar

    CHENG Y M. Analysis of the current situation of the use of red mud as a building material[J]. Henan Building Materials, 2022(11): 16−18. doi: 10.3969/j.issn.1008-9772.2022.11.hnjc202211006

    CrossRef Google Scholar

    [13] 薛生国, 李玉冰, 郭颖. 氧化铝工业赤泥环境影响研究进展[J]. 中国科学院大学学报, 2017, 34(4): 401−412. doi: 10.7523/j.issn.2095-6134.2017.04.001

    CrossRef Google Scholar

    XUE S G, LI Y B, GUO Y. Environmental impact of bauxite residue: a comprehensive review[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(4): 401−412. doi: 10.7523/j.issn.2095-6134.2017.04.001

    CrossRef Google Scholar

    [14] CHAVA V, RUBEN N, MADDURU S R C, et al. Comparison of mechanical and durability properties of treated and untreated red mud concrete[J]. Materials Today:proceedings, 2020, 27: 284−287. doi: 10.1016/j.matpr.2019.11.026

    CrossRef Google Scholar

    [15] 苏泽林, 王东波, 黄纤晴, 等. 高碱性拜耳法赤泥碳酸化脱碱及其机理研究[J]. 硅酸盐通报, 2020, 39(5): 1547−1552. doi: 10.16552/j.cnki.issn1001-1625.2020.05.027

    CrossRef Google Scholar

    SU Z L, WANG D B, HANG X Q, et al. Research on dealkalization and mechanism of high-alkaline bayer process red mud by carbonation[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1547−1552. doi: 10.16552/j.cnki.issn1001-1625.2020.05.027

    CrossRef Google Scholar

    [16] 丛云伶. 赤泥微波碳热还原-磁选回收铁工艺研究[D]. 鞍山: 辽宁科技大学, 2018.

    Google Scholar

    CONG Y L. Study on iron recovery process of red mud on microwave carbon thermal reduction and magnetic separation methods[D]. Anshan: University of Science and Technology Liaoning, 2018.

    Google Scholar

    [17] AGRAWAL S, DHAWAN N. Evaluation of red mud as a polymetallic source– a review[J]. Minerals Engineering, 2021, 171: 1−14.

    Google Scholar

    [18] DM A, CM A, SB A, et al. Characterization of cast iron and slag produced by red muds reduction via arc transferred plasma (ATP) reactor under different smelting conditions – science direct[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 1−11.

    Google Scholar

    [19] 郭志强, 燕可洲, 张吉元, 等. 煤矸石/粉煤灰对赤泥钠化还原焙烧反应的影响机制[J]. 化工学报, 2022, 73(5): 2194−2205. doi: 10.11949/0438-1157.20211588

    CrossRef Google Scholar

    GUO Z Q, YAN K Z, ZHANG J Y, et al. Influence mechanism of coal gangue/coal fly ash on the sodium reduction roasting reaction of red mud[J]. CIESC Journal, 2022, 73(5): 2194−2205. doi: 10.11949/0438-1157.20211588

    CrossRef Google Scholar

    [20] 郑秀芳, 胡剑, 姜梅, 等. 低温拜耳赤泥石灰法脱碱工艺优化研究[J]. 轻金属, 2010(4): 21−23. doi: 10.13662/j.cnki.qjs.2010.04.014

    CrossRef Google Scholar

    ZHENG X F, HU J, JIANG M, et al. Study on optimization of dealkalization process on adding lime to red mud produced by low temperature bayer process[J]. Light Metals, 2010(4): 21−23. doi: 10.13662/j.cnki.qjs.2010.04.014

    CrossRef Google Scholar

    [21] LI R, ZHANG T, LIU Y, et al. Calcification–carbonation method for red mud processing[J]. Journal of Hazardous Materials, 2016, 316: 94−101. doi: 10.1016/j.jhazmat.2016.04.072

    CrossRef Google Scholar

    [22] 郭芳芳. “钙化—碳化法”处理拜耳法赤泥的研究[D]. 沈阳: 东北大学, 2015.

    Google Scholar

    GUO F F. Study on the treatment of bayer red mud by “calcification-carbonization process”[D]. Shengyan: Northeast University, 2015.

    Google Scholar

    [23] 张懿. 亚熔盐清洁生产技术与高效利用[M]. 北京: 化学工业出版社, 2016.

    Google Scholar

    ZHANG Y. Clean production technology and efficient utilization of sub-molten salt[M]. Beijing: Chemical Industry Press, 2016.

    Google Scholar

    [24] BANNING N C, PHILLIPS I R, JONES D L, et al. Development of microbial diversity and functional potential in bauxite residues and under rehabilitation[J]. Restoration Ecology, 2011, 19(101): 78−87. doi: 10.1111/j.1526-100X.2009.00637.x

    CrossRef Google Scholar

    [25] CHENG F Q, CUI L, MILLER J D, et al. Aluminum leaching from calcined coal using hydrochloric acid solution[J]. Mineral Processing and Extractive Metallurgy Review, 2012, 33(6): 391−403. doi: 10.1080/08827508.2011.601700

    CrossRef Google Scholar

    [26] GUO Y X, YAN K Z, CUI L, et al. Effect of NaCO3 additive on the activation of coal gangue for alumina extraction[J]. International Journal of Mineral Processing, 2014, 131: 51−57. doi: 10.1016/j.minpro.2014.07.001

    CrossRef Google Scholar

    [27] 耿学文, 马鸿文, 苏双青, 等. 高铝煤矸石脱硅滤饼碱石灰烧结法制备氢氧化铝的实验研究[J]. 矿物岩石地球化学通报, 2012, 31(6): 635−639. doi: 10.3969/j.issn.1007-2802.2012.06.011

    CrossRef Google Scholar

    GENG X W, MA H W, SU S Q, et al. Preparation of aluminum hydroxide from high-alumina gangue desilication residues based on soda lime sintering method[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(6): 635−639. doi: 10.3969/j.issn.1007-2802.2012.06.011

    CrossRef Google Scholar

    [28] 江文琛. 拜耳法赤泥碱石灰烧结法回收铁铝工艺的研究[D]. 武汉: 华中科技大学, 2009.

    Google Scholar

    JIANG W C. Study on the process of recovering iron and aluminum from bayer process red mud alkali lime sintering[D]. Wuhan: Huazhong University of Science and Technology, 2009.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(308) PDF downloads(21) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint