Citation: | WANG Dapeng, QU Guanghua, SUN wei. Experimental Study on Leaching of a Low-grade Phosphate Ore with Thiobacillus Ferrooxidans[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 131-137. doi: 10.13779/j.cnki.issn1001-0076.2023.02.020 |
Thiobacillus ferrooxidans was used to leach a low-grade phosphate ore. The optimal growth conditions of Thiobacillus ferrooxidans was investigated, and the bacteria that could resistant to high slurry concentrations was obtained by step-by-step transfer of domestication. Domesticated bacteria was used to leach phosphate ore to achieve the purpose of improving the leaching rate. A phosphate mine in Guizhou with a grade of 13.17% P2O5 was used as the research object. The results showed that the activity of Thiobacillus ferrooxidans oxide was strong under the conditions of temperature of 33 ℃ and initial pH of 1.6, and the higher concentration was 1.63×108 mL−1. The P2O5 leaching rate of thiobacillus ferrooxidans after domestication was 76.6%, and the corresponding thiobacillus ferrooxidans without domestication was only 60.3%. When the mass concentration of slurry was 1%, 3%, 5%, 7% and 9%, the leaching rates of phosphate ore were 56.4%, 70.4%, 75.2%, 64% and 44.7%, respectively. The leaching rate of phosphate ore with pyrite as nutrient was 78.6%, which was 17.1 percentage points higher than the leaching rate with sulfur as a nutrient. The study improves the leaching rate of low-grade phosphate ore, and it shortens the phosphate leaching time.
[1] | 孔汇贤. 磷矿选矿进展及存在的问题[J]. 内蒙古煤炭经济, 2022(10): 144−146. KONG H X. Progress and problems of phosphate ore dressing[J]. Inner Mongolia Coal Economy, 2022(10): 144−146. |
[2] | 陈宇. 磷矿选矿工艺研究[D]. 武汉: 武汉工程大学, 2017. CHUN Y. Study on beneficiation process of phosphate rock[D]. Wuhan: Wuhan University of Engineering, 2017. |
[3] | 闫雅雯, 国亚非, 赵泽阳, 等. 2020年中国磷矿选矿年评[J]. 化工矿物与加工, 2021, 50(9): 54−59. YAN Y W, GUO Y F, ZHAO Z Y, et al. China's phosphate ore dressing year in 2020[J]. Industrial Minerals and Processing, 2021, 50(9): 54−59. |
[4] | 冯安生, 曹飞, 吕振福. 我国磷矿资源综合利用水平调查与评价[J]. 矿产保护与利用, 2017(2): 13−17. FENG A S, CAO F, LV Z F. Investigation and evaluation of comprehensive utilization level of phosphate rock resources in china[J]. Conservation and Utilization of Mineral Resources, 2017(2): 13−17. |
[5] | 刘文彪, 黄文萱, 马航, 等. 我国磷矿资源分布及其选矿技术进展[J]. 化工矿物与加工, 2020, 49(12): 19−25. LIU W B, HUANG W X, MA H, et al. Distribution of phosphate ore resources in China and its mineral processing technology progess[J]. Industrial Minerals and Processing, 2020, 49(12): 19−25. |
[6] | VAN, JONG-UN. Comparison of microbial leaching of arsenic and heavy metals from mine tailings[J]. Biotechnology And Bioprocess Engineering, 2015, 20(1): 91−99. doi: 10.1007/s12257-014-0223-1 |
[7] | 池汝安, 肖春桥, 高洪, 等. 几种微生物溶解磷矿粉的动态研究[J]. 化工矿物与加工, 2005(7): 2. CHI R A, XIAO C Q, GAO H, et al. Study on the dissolution of phosphate rock powder by several microorganisms[J]. Industrial Minerals and Processing, 2005(7): 2. |
[8] | 孙伟, 渠光华, 王大鹏. 磷矿的微生物浸出研究进展[J]. 矿产保护与利用, 2021, 41(4): 50−58. SUN W, QU G H, WANG D P. Research progress in microbial leaching of phosphate rock[J]. Conservation and Utlalzation of Mineral Resources, 2021, 41(4): 50−58. |
[9] | QURESHI, SHABNAM, RICHARDS. Microbial acidification and pH effects on trace element release from sewage sludge[J]. Environmental Pollution, 2018, 132(1): 61−71. |
[10] | 刘俊. 低品位磷矿的微生物浸出研究[D]. 武汉: 武汉理工大学, 2008. LIU J. Study on bioleaching of low-grade phosphate rock[D]. Wuhan: Wuhan University of T echnology, 2008. |
[11] | 曹猛. 硫化矿微生物浸矿机理及动力学模型研究进展[J]. 广州化工, 2020, 48(22): 13−16. CAO M. Research progress on mechanism and kinetic model of sulfide ore bioleaching[J]. Guangzhou Chemical Industry, 2020, 48(22): 13−16. |
[12] | 关海燕. 嗜酸氧化硫硫杆菌浸出低品位磷矿及其机理[D]. 武汉: 武汉科技大学, 2010. GUAN H Y. Leaching of low-grade phosphate rock by acidophilic thiobacillus thiooxidans and its mechanism[D]. Wuhan: Wuhan University of Science and Technology, 2010. |
[13] | 郑红艾. 硫化矿生物浸出过程的氧化机理及生物多样性研究[D]. 上海: 东华大学, 2015. ZHENG H A. Study on Oxidation Mechanism and biodiversity of sulfide ore bioleaching process[D]. Shanghai: Donghua University, 2015. |
[14] | 王明伟, 梁嘉琦, 曾伟民, 等. 嗜酸氧化亚铁硫杆菌和嗜酸氧化硫硫杆菌联合浸出高锡多金属硫化矿[J]. 有色金属科学与工程, 2018, 9(3): 76. WANG M W, LIANG J Q, ZENG W M, et al. Joint leaching of high tin polymetallic sulfide ores by acidophilic thiobacillus ferrooxidans and acidophilic thiobacillus thiooxidans[J]. Nonferrous Metals Science and Engineering, 2018, 9(3): 76. |
[15] | 张宪. 嗜酸氧化硫硫杆菌的全基因组测序及硫氧化途径研究[D]. 长沙: 中南大学, 2014. ZHANG X. Genome sequencing of thiobacillus thiooxidans acidophilus and its sulfur oxidation pathway[D]. Changsha: Central South University, 2014. |
[16] | CHI R A, HUANGX H, XIAO C Q. Bioleaching of soluble phosphoeous from rock phosphate containing pyrite with DES-induced Acidithiobacillus ferrooxidans[J]. Journal of central south university technology, 2009, 16(5): 758−762. doi: 10.1007/s11771-009-0126-z |
[17] | 吴晓燕. 多菌种协同分解中低品位磷矿的作用机理研究[D]. 武汉: 武汉工程大学, 2015. WU X Y. Study on the mechanism of multi strain synergistic decomposition of medium and low grade phosphate ore[D]. Wuhan: Wuhan University of Engineering, 2015. |
[18] | 宋健. 金属硫化矿微生物浸出及浸出机理数学模型研究[D]. 济南: 山东大学, 2010. SONG J. Study on microbial leaching of metal sulfide ore and mathematical model of leaching mechanism[D]. Ji’nan: Shandong University, 2010. |
[19] | 龚文琪, 陈伟, 张晓峥, 等. 氧化亚铁硫杆菌的分离培养及其浸磷效果[J]. 过程工程学报, 2007(3): 584−588. GONG W Q, CHEN W, ZHANG X Z, et al. Isolation and cultivation of thiobacillus ferrooxidans and its phosphorus leaching effect[J]. The Chinese Journal of Process Engineering, 2007(3): 584−588. |
[20] | 陈伟. 嗜酸氧化亚铁硫杆菌的培养特性和浸磷效果[D]. 武汉: 武汉理工大学, 2006. CHEN W. Culture characteristics and phosphorus leaching effect of acidophilic thiobacillus ferrooxidans[D]. Wuhan: Wuhan University of Technology, 2006. |
[21] | 李凌凌. 嗜酸硫杆菌浸出中低品位磷矿及其浸矿机理研究[D]. 武汉: 武汉科技大学, 2014. Li L L. Study on the leaching mechanism of low-grade phosphate rock by thiobacillus acidophilus[D]. Wuhan: Wuhan University of Science and Technology, 2014. |
[22] | 申秋实. 嗜酸氧化硫硫杆菌产酸活性与低品位磷矿细菌浸出[D]. 武汉: 武汉理工大学, 2007. SHEN Q S. Acidogenic activity of thiobacillus thiooxidans acidophilus and bioleaching of low-grade phosphate rock[D]. Wuhan: Wuhan University of Technology, 2007. |
[23] | 李翰林, 李茹. 氧化亚铁硫杆菌的生长特性及驯化[J]. 西安工程大学学报, 2017, 31(1): 41−45. LI H L, LI R. Growth characteristics and domestication of thiobacillus ferrooxidans[J]. Journal of Xi'an Polytechnic University, 2017, 31(1): 41−45. |
[24] | 王超远. 氧化亚铁硫杆菌浸出硫化铜矿试验研究[D]. 包头: 内蒙古科技大学, 2020. WANG C Y. Experimental study on leaching of copper sulfide ores by thiobacillus ferrooxidans[D]. Baotou: Inner Mongolia University of Science and Technology, 2020. |
[25] | 唐敏, 田野, 刘毅, 等. Fe2+对微生物浸出赞比亚酸浸渣的影响[J]. 当代化工, 2013, 42(6): 739−742. |
[26] | TANG M, TIAN Y, LIU Y, et al. Effect of Fe2+on microbial leaching of Zambian acid leaching residue[J]. Moder Chemical Research, 2013, 42(6): 739−742. |
Bacterial concentration of thiobacillus ferrooxidans at different pH (a) and temperature (b)
pH of the system at different acclimation concentrations
Growth curve of thiobacillus ferrooxidans
Picture of jarosite (a) and XRD analysis (b)
ORP (a) and Fe3+,Fe2+content (b) change curve during the growth of thiobacillus ferrooxidans
Variation curve of Fe3+concentration (a) and leaching rate (b) during leaching
pH (a) and ORP (b) change curve of ore leaching system
Leaching rate of phosphate rock under different pulp concentration
ORP (a) change and Fe2+oxidation rate (b) curve during leaching
Leaching rate of phosphate rock under different nutrients