Citation: | ZHANG Yang, CUI Yiqi, LAN Zhuoyue, XI Xinyue, HUANG Dianqiang, TONG Xiong, WANG Jing. Experiment and Mechanism Analysis of Enhanced Recycling Mud-containing Fine-grained Copper Sulfide Ore of Pulang by Combined Collectors[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 27-34. doi: 10.13779/j.cnki.issn1001-0076.2023.02.004 |
The optimization and the mechanism of collectors for the copper sulfide mine bearing fine copper minerals and mud in Pulang, Shangri-La were studied, because of the poor copper recovery using MCO as collector. The results of process mineralogy showed that the copper grade of the raw ore was 0.396%, in which the chalcopyrite was the main copper-bearing mineral and fine dissemination size. The main gangue minerals were quartz, chlorite, plagioclase, etc. The concentrate with a copper grade of 23.41% and a recovery of 82.15% was obtained from the flotation closed circuit test using the combined collector of MCO, CO100 and 250-A (dosage 36+4.5+2.5 g/t). Compared with MCO, the copper grade and the recovery were increased by 0.19% and 4.36% , respectively. The mechanism study results indicated that the adsorption mode of the combined collectors on chalcopyrite surface was chemical adsorption. The electrostatic repulsion force between the collector and chalcopyrite surface was reduced, therefore, the collector adsorption was significantly improved. Due to the higher selectivity and stronger collecting ability, the combined collector can recover fine copper sulfide minerals effectively.
[1] | 陈甲斌, 梁振杰, 高鹏. 中国铜资源现状与发展战略研究[J]. 世界有色金属, 2005(12): 8−11. CHEN J B, LIANG Z J, GAO P. Research on current situation and development strategy of copper resources in China[J]. World Nonferrous Metals, 2005(12): 8−11. |
[2] | CARLITO B T, ILHWAN P, THEERAYUT P, et al. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing /recycling challenges, socio-environmental aspects, and sustainability issues[J]. Resources, Conservation and Recycling, 2021, 170: 105610. doi: 10.1016/j.resconrec.2021.105610 |
[3] | 姚伟, 李茂林, 崔瑞, 等. 微细粒矿物的分选技术[J]. 现代矿业, 2015(1): 66−69+152. YAO W, LI M L, CUI R, et al. Separation technology of fine grained minerals[J]. Modern Mining, 2015(1): 66−69+152. |
[4] | WEI Z, HU Y, HAN H et al. Selective separation of scheelite from calcite by selfassembly of H2SiO3 polymer using Al3+ in Pb-BHA flotation[J]. Minerals, 2019, 9(1): 43. |
[5] | 陈文胜, 付君浩, 韩海生, 等. 微细粒矿物分选技术研究进展[J]. 矿产保护与利用, 2020, 40(4): 134−145. CHEN W S, FU J H, HAN H S, et al. Research progress of fine mineral separation technology[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 134−145. |
[6] | FORBES. E. Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques[J]. International Journal of Mineral Processing, 2011, 99(1/4): 1−10. |
[7] | 秦煦坤, 钱玉鹏, 高惠民, 等. 剪切絮凝强化浮选微细粒红柱石试验[J]. 金属矿山, 2017(9): 115−119. QIN X K, QIAN Y P, GAO H M, et al. Experiment of shear flocculation strengthening flotation of fine andalusite[J]. Metal Mine, 2017(9): 115−119. |
[8] | HUANG X, XIAO W, ZHAO H, et al. Hydrophobic flocculation flotation of rutile fines in presence of styryl phosphonic acid[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(7): 1424−1432. doi: 10.1016/S1003-6326(18)64781-8 |
[9] | CHEN W, CHEN F, BU X, et al. A significant improvement of fine scheelite flotation through rheological control of flotation pulp by using garnet[J]. Minerals Engineering, 2019, 138: 257−266. doi: 10.1016/j.mineng.2019.05.001 |
[10] | HAO H, LI L, SOMASUNDARAN P, et al. Adsorption of pregelatinized starch for selective flocculation and flotation of fine siderite[J]. Langmuir, 2019, 35(21): 6878−6887. doi: 10.1021/acs.langmuir.9b00669 |
[11] | 杨招君, 徐晓衣, 袁祥奕. 低品位锡细泥选择性絮凝浮选试验研究[J]. 中国矿业, 2019, 28(z1): 212−215+219. YANG Z J, XU X Y, YUAN X Y. Experimental study on selective flocculation flotation of low grade tin slime[J]. China Mining Industry, 2019, 28(z1): 212−215+219. |
[12] | ZOU W, GONG L, HUANG J, et al. Adsorption of hydrophobically modified polyacrylamide P(AM-NaAA-C16DMAAC) on model coal and clay surfaces and the effect on selective flocculation of fine coal[J]. Minerals Engineering, 2019, 142: 105887. doi: 10.1016/j.mineng.2019.105887 |
[13] | LI L, HAO H, YUAN Z, et al. Regulating effects of citric acid and pregelatinized starch on selective flocculation flotation of microfine siderite[J]. Journal of Molecular Liquids, 2020, 315: 113726. doi: 10.1016/j.molliq.2020.113726 |
[14] | 陈秀珍. 疏水性聚合物对细粒级白钨矿载体浮选工艺和机理研究[D]. 长沙: 中南大学, 2014. CHEN X Z. Research on flotation technology and Mechanism of hydrophobic polymer for fine scheelite [D]. Changsha: Central South University, 2014. |
[15] | ZHOU S, WANG X, BU X, et al. A novel flotation technique combining carrier flotation and cavitation bubbles to enhance separation efficiency of ultrafine particles[J]. Ultrasonics Sonochemistry, 2020, 64: 105005. |
[16] | ZHANG X, HU Y, SUN W, et al. The effect of polystyrene on the car- rier flotation of fine smithsonite[J]. Minerals, 2017, 7: 524. |
[17] | XING Y, GUI X, PAN L, et al. Recent experimental advances for understanding bubble-particle attachment in flotation[J]. Advances in Colloid and Interface Science, 2017, 246: 105−132. doi: 10.1016/j.cis.2017.05.019 |
[18] | 何桂春, 王玉彤, 康倩. 纳米技术在微细粒矿物浮选中的应用[J]. 有色金属科学与工程, 2015, 6(2): 57−62. HE G C, WANG Y T, KANG Q. Application of nanotechnology in the flotation of fine minerals[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 57−62. |
[19] | FARROKHPAY S, FILIPPOVA I, FILIPPOVA L, et al. Flotation of fine particles in the presence of combined microbubbles and conventional bubbles[J]. Minerals Engineering, 2020, 155: 106439. doi: 10.1016/j.mineng.2020.106439 |
[20] | R A F, RUBIO J. On the role of nanobubbles in particle-bubble adhesion for the flotation of quartz and apatitic minerals[J]. Minerals Engineering, 2018, 127: 178−184. doi: 10.1016/j.mineng.2018.08.020 |
[21] | 廖世双, 欧乐明, 周伟光. 空化过程微纳米气泡性质及其对细粒矿物浮选的影响[J]. 中国有色金属学报, 2019, 29(7): 1567−1574. LIAO S S, OU L M, ZHOU W G. Properties of micro-nano bubbles in cavitation process and their effect on fine mineral flotation[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(7): 1567−1574. |
[22] | XING Y, XU M, GUO F, et al. Role of different types of clay in the floatability of coal: Induction time and bubble-particle attachment kinetics analysis[J]. Powder Technology, 2019, 344: 814−818. doi: 10.1016/j.powtec.2018.12.074 |
[23] | 陈明波, 郑其方, 赵荣, 等. 云锡某硫化铜新型组合捕收剂浮选试验研究[J]. 有色金属工程, 2022, 12(6): 130−134. CHEN M B, ZHENG Q F, ZHAO R, et al. Flotation test study of a new combined copper sulfide collector in Yunxi[J]. Nonferrous Metals Engineering, 2022, 12(6): 130−134. |
[24] | 何庆浪, 韩彬, 童雄, 等. 组合捕收剂浮选低品位铜矿的试验研究[J]. 矿产保护与利用, 2015(5): 29−33. HE Q L, HAN B, TONG X, et al. Experimental study on flotation of low-grade copper ore by combined trap[J]. Conservation and Utilization of Mineral Resources, 2015(5): 29−33. |
[25] | 徐龙华, 田佳, 巫侯琴, 等. 组合捕收剂在矿物表面的协同效应及其浮选应用综述[J]. 矿产保护与利用, 2017(2): 107−112. XU L H, TIAN J, WU H Q, et al. Synergistic effect of combined collectors on mineral surface and its flotation application[J]. Conservation and Utilization of Mineral Resources, 2017(2): 107−112. |
[26] | BULATOVIC S M. Flotation of Copper Sulfide Ores[M]. 2007. |
[27] | 张闿. 浮选药剂的组合使用[M]. 北京: 冶金工业出版社, 1994. ZHANG K. Study on combination of flotation reagents[M]. Beijing: Metallurgical Industry Press, 1994. |
[28] | 陈慧. 复配捕收剂在难选胶磷矿浮选中的性能研究[D]. 武汉: 武汉工程大学, 2010. CHEN H. Study on Performance of complex collector in flotation of refractory Collophosphate [D]. Wuhan: Wuhan Institute of Technology, 2010. |
[29] | 张启梁. 非极性烃类药剂浮选云山石墨的试验研究[D]. 哈尔滨: 黑龙江科技大学, 2014. ZHANG Q L. Experimental study on flotation of Yunshan graphite with non-polar hydrocarbon agents [D]. Harbin: Heilongjiang University of Science and Technology, 2014. |
[30] | 宛鹤, 何廷树, 杨剑波, 等. 基于脂肪烃的复合烃油捕收剂改善选钼效果的试验研究[J]. 有色金属工程, 2017, 7(4): 58−63. WAN H, HE T S, YANG J B, et al. Experimental study on the improvement of molybdenum separation by complex hydrocarbon oil collector based on aliphatic hydrocarbon[J]. Nonferrous Metals Engineering, 2017, 7(4): 58−63. |
[31] | 吴海祥. 低碱度下黄铁矿与黄铜矿的浮选分离试验研究[D]. 昆明: 昆明理工大学, 2021. WU H X. Flotation separation of pyrite and chalcopyrite at low alkalinity[D]. Kunming: Kunming University of Science and Technology, 2021. |
[32] | WANG L, SUN W, HU Y H, et al. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite – Quartz flotation system[J]. Minerals Engineering, 2014, 64: 44−50. doi: 10.1016/j.mineng.2014.03.021 |
[33] | 舒开倩. 阴阳离子组合捕收剂对锂辉石矿的强化浮选分离及作用机理研究[D]. 绵阳: 西南科技大学, 2021. SHU K Q. Study on enhanced flotation separation and action mechanism of spodumene ore by combined cation and anion collector [D]. Mianyang: Southwest University of Science and Technology, 2021. |
[34] | 荆煦瑛, 陈式棣, 么恩云. 红外光谱实用指南[M]. 天津: 天津科学技术出版社, 1992. JING X Y, CHEN S D, YAO E Y. Practical guide of infrared spectroscopy [M]. Tianjin: Tianjin Science and Technology Press, 1992. |
Results of X-ray diffraction analysis
XRD analysis results of chalcopyrite samples
Results of pharmaceutical optimization experiments
Flow chart of the closed-circuit test
Effect of collector dosage on chalcopyrite flotation behavior
Relationship between pH value and Zeta potential on chalcopyrite surface
Relationship between reagent concentration and reagent adsorption on chalcopyrite surface
Infrared spectrogram