Citation: | CHI Shuyan, WANG Bohan, HUANG Dandan, ZHAO Bing. Heavy Metal Adsorption Mechanism of Red Mud-based Adsorbent in Acidic Wastewater[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 86-91. doi: 10.13779/j.cnki.issn1001-0076.2023.01.008 |
The adsorption characteristics of heavy metal ions in wastewater were investigated by using red mud-based adsorbent. The adsorption mechanism of red mud-based adsorbent was investigated by means of adsorption kinetic model, adsorption isotherm, FTIR and XRD with Cu2+and Zn2+ in acidic wastewater as the target. The results showed that the adsorption process of heavy metal ions Cu2+ and Zn2+ by the red mud-based adsorbent belonged to monomolecular layer adsorption, and the maximum adsorption amounts of Cu2+ and Zn2+ by Langmuir adsorption isotherms were 33.12 mg/g and 129.88 mg/g, respectively, which were in accordance with the quasi-secondary kinetic model. The Si-O-Si in the red mud-based adsorbent interacted with Cu2+ and Zn2+ and the adsorption process was chemisorption. This study provides a new way for the recycling of solid waste red mud from aluminum industry.
[1] | 胡凯旋. 赤泥堆场污染物对地下水环境的影响研究[J]. 水资源开发与管理, 2019(12): 44−48+53. HU K X. Study on influence of pollutants in red mud yard on groundwater environment[J]. Water Resources Development and Management, 2019(12): 44−48+53. |
[2] | 于栋, 罗庆, 苏伟, 等. 重金属废水电沉积处理技术研究及应用进展[J]. 化工进展, 2020, 39(5): 1938−1949. YU D, LUO Q, SU W, et al. A review on research and application of electrodeposition for heavy metal wastewater treatment[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1938−1949. |
[3] | 曹瑞雪, 康泽双, 刘万超, 等. 赤泥吸收矿化CO2技术研究[J]. 有色金属(冶炼部分), 2022(4): 57−60. CAO R X, KANG Z S, LIU W C, et al. Absorption and mineralization of CO2 with red mud[J]. Nonferrous Metals (Extractive Metallurgy), 2022(4): 57−60. |
[4] | KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resources, Conservation and Recycling, 2019, 141: 483−498. doi: 10.1016/j.resconrec.2018.11.006 |
[5] | 王璐, 郝彦忠, 郝增发. 赤泥中有价金属提取与综合利用进展[J]. 中国有色金属学报, 2018, 28(8): 1697−1710. WANG L, HAO Y Z, HAO Z F. Progress in valuable metal element recovery and utilization of red mud—A review[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(8): 1697−1710. |
[6] | LIU Z, ZONG Y, LI H, et al. Characterization of scandium and gallium in red mud with Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) and Electron Probe Micro-Analysis (EPMA)[J]. Minerals Engineering, 2018, 119: 263−273. doi: 10.1016/j.mineng.2018.01.038 |
[7] | 柳晓, 韩跃新, 何发钰, 等. 赤泥的危害及其综合利用研究现状[J]. 金属矿山, 2018(11): 7−12. LIU X, HAN Y X, HE F Y, et al. Research status on hazards and comprehensive utilization of red mud[J]. Metal Mine, 2018(11): 7−12. |
[8] | 廖仕臻, 杨金林, 马少健. 赤泥综合利用研究进展[J]. 矿产保护与利用, 2019, 39(3): 21−27. LIAO S Z, YANG J L, MA S J. Research progress in the comprehensive utilization of red mud[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 21−27. |
[9] | 赵玉莲, 刘敬, 何瑞明, 等. 赤泥还原焙烧磁选回收铁的试验研究[J]. 材料研究与应用, 2017, 11(4): 256−263+268. doi: 10.3969/j.issn.1673-9981.2017.04.010 ZHAO Y L, LIU J, HE R M, et al. The study on reduction roasting and magnetic separation of red mud[J]. Materials Research and Application, 2017, 11(4): 256−263+268. doi: 10.3969/j.issn.1673-9981.2017.04.010 |
[10] | 李艳军, 张浩, 韩跃新, 等. 赤泥资源化回收利用研究进展[J]. 金属矿山, 2021(4): 1−19. ZHANG Y J, ZHANG H, HAN Y X, et al. Research progresson resource recycling and utilization of red mud[J]. Metal Mine, 2021(4): 1−19. |
[11] | 张淑敏, 袁帅, 韩跃新, 等. 气基还原焙烧—弱磁选回收赤泥中铁矿物试验[J]. 金属矿山, 2018(6): 179−182. ZHANG S M, YUAN S, HAN Y X, et al. Recovery of iron minerals from red mud by gas reduction roasting and low intensity magnetic separation[J]. Metal Mine, 2018(6): 179−182. |
[12] | 吴世超, 朱立新, 孙体昌, 等. 赤泥综合利用现状及展望[J]. 金属矿山, 2019(6): 38−44. doi: 10.19614/j.cnki.jsks.201906007 WU S C, ZHU L X, SUN T C, et al. Comprehensive utilization status and prospect of red mud[J]. Metal Mine, 2019(6): 38−44. doi: 10.19614/j.cnki.jsks.201906007 |
[13] | 张彦娜, 潘志华. 不同温度下赤泥的物理化学特征分析[J]. 济南大学学报(自然科学版), 2005(4): 293−297. ZHANG Y N, PAN Z H. Analysis of the physicochemical characteristics of red mud at different temperatures[J]. Journal of University of Jinan(Science and Technology), 2005(4): 293−297. |
[14] | 贾鹏, 王雄, 陈俊. 污泥吸附络合铜的动力学、热力学及其机理研究[J]. 现代矿业, 2020, 36(6): 227−230. JIA P, WANG X, CHEN J. Studies on kinetics, thermodynamics, and mechanism of adsorption of complexation copper by sludge[J]. Modern Mining, 2020, 36(6): 227−230. |
[15] | 桂洪杰, 周亮. 非均质水溶有机物吸附特性及模型的研究[J]. 环境科学与技术, 2021, 44(6): 113−118. GUI H J, ZHOU L. Comparative study on adsorption characteristics and models of heterogeneous water-soluble organic matters[J]. Environmental Science and Technology, 2021, 44(6): 113−118. |
[16] | 唐明云, 张海路, 段三壮, 等. 基于Langmuir模型温度对煤吸附解吸甲烷影响研究[J]. 煤炭科学技术, 2021, 49(5): 182−189. TANG M Y, ZHANG H L, DUAN S Z, et al. Study on effect of temperature on methane adsorption and desorption in coal based on Langmuir model[J]. Coal Science and Technology, 2021, 49(5): 182−189. |
XRD images of red mud and adsorbent based on red mud
Adsorption kinetics curve of Cu2+ and Zn2+ on red mud-based magnetic adsorbent: (a) Cu2+; (b) Zn2+
Adsorption isotherm curve of Cu2+ and Zn2+ on red mud-based adsorbent: (a) Cu2+;(b) Zn2+
Zeta potential changes before and after the adsorption of red mud-based adsorbents
Infrared spectra of red mud-based magnetic adsorbent before and after adsorption
XRD patterns of red mud-based magnetic adsorbent before and after adsorption