Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 6
Article Contents

LI Yan, DOU Yafang, XIAO Wenli, CHAI Dong, Hazritiali Memet. Mechanism Analysis of Cr(Ⅵ) Reduction by Coal Gangue in Acidic Wastewater[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 30-35. doi: 10.13779/j.cnki.issn1001-0076.2022.06.004
Citation: LI Yan, DOU Yafang, XIAO Wenli, CHAI Dong, Hazritiali Memet. Mechanism Analysis of Cr(Ⅵ) Reduction by Coal Gangue in Acidic Wastewater[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 30-35. doi: 10.13779/j.cnki.issn1001-0076.2022.06.004

Mechanism Analysis of Cr(Ⅵ) Reduction by Coal Gangue in Acidic Wastewater

  • The kinetic behavior and mechanism of the reaction between coal gangue and Cr(Ⅵ) were investigated. The study showed that the reduction process of Cr(Ⅵ) by coal gangue could be divided into two stages. During the initial stage, siderite and pyrite in coal gangue reacted with hydrogen ions to generate Fe(Ⅱ), S and H2S. Since it was a solid-liquid reaction, the reaction rate was closely related to the mass transfer rate. The reaction rate constant obtained under stirring condition was 0.169 mg/(L·min), much higher than 0.048 mg/(L·min) got under static conditions. The second stage was the reduction of Cr(Ⅵ). The results got from elemental analysis, infrared and XRD characterization showed that the iron and sulfur elements in siderite and pyrite were oxidized to Fe(Ⅲ) and SO42−, and Cr(Ⅵ) was reduced to Cr(Ⅲ) which is low toxicity . Siderite and pyrite are common components in coal gangue. According to the above research and analysis, the use of coal gangue for treating wastewater containing Cr(Ⅵ) not only improves the utilization efficiency of coal gangue, but also provides a cost-effective and efficient method for the treatment of wastewater containing Cr(Ⅵ).

  • 加载中
  • [1] 王雪, 黎艳, 王晓军, 等. Fe3+、Fe2+对白云石、高岭土、石英浮选行为的影响研究[J]. 冶金分析, 2017, 37(2): 59−64.

    Google Scholar

    WANG X, LI Y, WANG X J, et al. Study on influence of Fe3+ and Fe2+ on flotation of dolomite, kaolin and quartz[J]. Metallurgical Analysis, 2017, 37(2): 59−64.

    Google Scholar

    [2] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165−178.

    Google Scholar

    LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and utilization of mineral resources, 2021, 41(6): 165−178.

    Google Scholar

    [3] MENG F R, YU J L. TAHMASEB A. Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace[J]. Energy & Fuels, 2013, 27(6): 2923−2932.

    Google Scholar

    [4] ZHOU C C, LIU G J, YAN Z C, et al. Transformation behavior of mineral composition and trace elements during coal gangue combustion[J]. Fuel, 2012, 97: 644−650. doi: 10.1016/j.fuel.2012.02.027

    CrossRef Google Scholar

    [5] 王雪, 陈平, 王晓军, 等. 油酸钠体系下白云石、高岭土、石英的浮选性能[J]. 非金属矿, 2016, 39(4): 80−83. doi: 10.3969/j.issn.1000-8098.2016.04.024

    CrossRef Google Scholar

    WANG X, CHEN P, WANG X J, et al. Floatability of dolomite, kaolin and quartz in system of sodium oleate[J]. Non-Metallic Mines, 2016, 39(4): 80−83. doi: 10.3969/j.issn.1000-8098.2016.04.024

    CrossRef Google Scholar

    [6] MISZ-KENNAN M, FABIASKA M. Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland)[J]. International Journal of Coal Geology, 2010, 81(4): 343−358. doi: 10.1016/j.coal.2009.08.009

    CrossRef Google Scholar

    [7] 许泽胜, 陈佳蕊, 王森彪, 等. 煤矸石分级分质加工与利用的研究[J]. 中国煤炭, 2021, 47(11): 61−68. doi: 10.3969/j.issn.1006-530X.2021.11.010

    CrossRef Google Scholar

    XUE Z S, CHEN J R, WANG S B, et al. Study on the grading and quality-separating processing and utilization of coal gangue[J]. China Coal, 2021, 47(11): 61−68. doi: 10.3969/j.issn.1006-530X.2021.11.010

    CrossRef Google Scholar

    [8] MEI Z, DOU Y W, ZHANG Y Z, et al. Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete[J]. Construction and Building Materials, 2019, 220(30): 386−395.

    Google Scholar

    [9] 刘成龙, 许爱华, 夏举佩, 等. 煤矸石浸渣制备白炭黑工艺优化及性能分析[J]. 精细化工, 2019, 36(11): 2177−2184. doi: 10.13550/j.jxhg.20190348

    CrossRef Google Scholar

    LIU C L, XU A H, XIA J P, et al. Process optimization and performance analysis for preparation of silica from coal gangue leaching residue[J]. Fine Chemicals, 2019, 36(11): 2177−2184. doi: 10.13550/j.jxhg.20190348

    CrossRef Google Scholar

    [10] 吴红, 卢香宇, 罗忠竞, 等. 活化煤矸石免烧砖制备及机理分析[J]. 非金属矿, 2018, 41(1): 30−33. doi: 10.3969/j.issn.1000-8098.2018.01.010

    CrossRef Google Scholar

    WU H, LU X Y, LUO Z J, et al. Preparation and mechanism analysis of activated coal gangue unburned bricks[J]. Non-Metallic Mines, 2018, 41(1): 30−33. doi: 10.3969/j.issn.1000-8098.2018.01.010

    CrossRef Google Scholar

    [11] XIAO J, LI F, ZHONG Q, et al. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC[J]. Hydrometallurgy, 2015, 155: 118−124. doi: 10.1016/j.hydromet.2015.04.018

    CrossRef Google Scholar

    [12] 田爱杰, 田爱民, 孔令靓, 等. 正交试验法研究煤矸石中镓的提取工艺条件[J]. 中国锰业, 2016, 34(6): 96−99.

    Google Scholar

    TIAN A J, TIAN A M, KONG L L, et al. Production skill of gallium in gangue of orthogonal experiment[J]. China’ Manganese Industry, 2016, 34(6): 96−99.

    Google Scholar

    [13] SHANG Z, ZHANG L W, ZHAO X, et al. Removal of Pb(Ⅱ), Cd(Ⅱ) and Hg(Ⅱ) from aqueous solution by mercapto-modified coal gangue[J]. Journal of Environmental Management, 2019, 231(1): 391−396.

    Google Scholar

    [14] 段锋, 马爱琼, 肖国庆, 等. 煤矸石在高温材料中的应用研究进展[J]. 硅酸盐通报, 2013, 32(9): 1811−1816.

    Google Scholar

    DUAN F, MA A Q, XIAO G Q, et al. Study progress on application of coal gangue in high temperature materials[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1811−1816.

    Google Scholar

    [15] LI C, WAN J, SUN H, et al. Investigation on the activation of coal gangue by a new compound method[J]. Journal of Hazardous Materials, 2010, 179(1-3): 515−520. doi: 10.1016/j.jhazmat.2010.03.033

    CrossRef Google Scholar

    [16] 李慧婉, 和东芹, 谢娟, 等. SnO2-ZnO/煤矸石复合物光催化降解有机磷农药的性能研究[J]. 矿产综合利用, 2020(4): 185−190. doi: 10.3969/j.issn.1000-6532.2020.04.032

    CrossRef Google Scholar

    LI H W, HE D Q, XIE J, et al. Study on the Photocatalytic Degradation of Organophosphorus Pesticides by SnO2-ZnO/coal gangue composite[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 185−190. doi: 10.3969/j.issn.1000-6532.2020.04.032

    CrossRef Google Scholar

    [17] MOHAMMADI R, AZADMEHR A, MAGHSOUDI A. Fabrication of the alginate-combusted coal gangue composite for simultaneous and effective adsorption of Zn(Ⅱ) and Mn(Ⅱ)[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103494. doi: 10.1016/j.jece.2019.103494

    CrossRef Google Scholar

    [18] LI H, FENG Z, JING W, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chemical Engineering Journal, 2020, 390(15): 124513.

    Google Scholar

    [19] BU N, LIU X, SONG S, et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution[J]. Advanced Powder Technology, 2020, 31(7): 2699−2710. doi: 10.1016/j.apt.2020.04.035

    CrossRef Google Scholar

    [20] RAVIKUMAR K V G, KUMAR D, KUMAR G, et al. Enhanced Cr(Ⅵ) removal by nanozerovalent iron-immobilized alginate beads in the presence of a biofilm in a continuous-flow reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(20): 5973−5982.

    Google Scholar

    [21] PAKZADEH B, BATISTA J R. Chromium removal from ion-exchange waste brines with calcium polysulfide[J]. Water Research, 2011, 45(10): 3055−3064. doi: 10.1016/j.watres.2011.03.006

    CrossRef Google Scholar

    [22] AGRAWAL A, KUMAR V, PANDEY B D. Remediation opinions for the treatment of electroplating and leather tanning effluent containing chromium–a review[J]. Mineral Processing & Extractive Metallurgy Review, 2006, 27: 99−130.

    Google Scholar

    [23] PRABHAKARAN S K, VIJAYARAGHAVAN K, BALASUBRAMANIAN R. Removal of Cr(Ⅵ) ions by spent tea and coffee dusts: reduction to Cr(Ⅲ) and biosorption[J]. Industrial & Engineering Chemistry Research, 2009, 48(4): 2113−2117.

    Google Scholar

    [24] KUMAR A, JENA H M. Adsorption of Cr(Ⅵ) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 2032−2041.

    Google Scholar

    [25] AMINULLSLAM M, ANGOVE M J, MORTON D W. Recent innovative research on chromium (Ⅵ) adsorption mechanism[J]. Environmental Nanotechnology, Monitoring & Management, 2019, 12: 100267.

    Google Scholar

    [26] DABROWSKI A, HUBICKI Z, PODKOSCIELNY P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56(2): 91−106.

    Google Scholar

    [27] JACHULA J, HUBICKI Z. Removal of Cr(Ⅵ) and As(Ⅴ) ions from aqueous solutions by polyacrylate and polystyrene anion exchange resins[J]. Applied Water Science, 2013, 3: 653−664.

    Google Scholar

    [28] MA L, CHEN N, FENG C, et al. Enhanced Cr(Ⅵ) reduction in biocathode microbial electrolysis cell Enhanced Cr(Ⅵ) reduction in biocathode microbial electrolysis cell using Fenton-derived ferric sludge[J]. Water Research, 2022, 212(1): 118114.

    Google Scholar

    [29] JIANG B, GONG Y, GAO J, et al. The reduction of Cr(Ⅵ) to Cr(Ⅲ) mediated by environmentally relevant carboxylic acids: state-of-the-art and perspectives[J]. Journal of Hazardous Materials, 2019, 365(5): 205−226.

    Google Scholar

    [30] LI Y, WANG X J. Chromium (Ⅵ) reduction in aqueous solutions using coal gangue[J]. Desalination and Water Treatment, 2018, 113: 102−108.

    Google Scholar

    [31] 李惠云, 郭金福. 热处理温度对煤矸石结构及吸附Cr6+性能的影响[J]. 非金属矿, 2005, 28(4): 45−47. doi: 10.3969/j.issn.1000-8098.2005.04.017

    CrossRef Google Scholar

    LI H Y, GUO J F. Effects of thermal treatment temperature on coal gangue structure and Cr6+adsorbability[J]. Non-Metallic Mines, 2005, 28(4): 45−47. doi: 10.3969/j.issn.1000-8098.2005.04.017

    CrossRef Google Scholar

    [32] 秦巧燕, 贾陈忠, 周学丽. 活化煤矸石对含铬废水的吸附处理研究[J]. 工业安全与环保, 2007(6): 23−25. doi: 10.3969/j.issn.1001-425X.2007.06.008

    CrossRef Google Scholar

    QIN Q Y, JIA C Z, ZHOU X L. Research on absorption treatment of wastewater containing chromium by active coal gangue[J]. Industrial Safety and Environmental Protection, 2007(6): 23−25. doi: 10.3969/j.issn.1001-425X.2007.06.008

    CrossRef Google Scholar

    [33] 南京大学《无机及分析化学》编写组. 无机及分析化学[M]. 北京: 高等教育出版社, 2006: 58-59.

    Google Scholar

    Compilation Group of Inorganic and Analytical Chemistry, Nanjing University. Inorganic and Analytical Chemistry[M]. Beijing: Higher Education Press, 2006: 58-59.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(109) PDF downloads(20) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint